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1. Introduction 21 

Shift invariance  is a property opposite to edges – an edge corresponds to the location of the strongest 22 

change of image along some direction; shift invariance corresponds to a location with a direction of zero 23 

change.  These two properties are dual each other in the following sense.  24 

A functional of 'shift resistance' can be easily introduced. Such a functional of two arguments –  image 25 

location and a direction in image plane – would compute the magnitude of spatial derivative along the input 26 

direction for a fragment at the input location. Edge detection can be carried out by search for local maxima of 27 

this functional; detection of shift invariance can be achieved by search for those directions for which shift 28 

resistance is equal to zero. For a fixed value of the first argument, the direction of the strongest change of the 29 

functional is orthogonal to the direction of zero change. 30 

Well-known edge detectors such as those by Sobel, Roberts, Canny, and some others, see survey by 31 

(Mlsna and Rodriguez, 2005), can be derived from particular instances of such a shift resistance functional.  32 

These detectors use convolution masks to signal an edge. The number and dimension of the masks depend 33 

on the detector chosen, but regardless of the choice, a dual set of masks can be derived to signal zeros of shift-34 

resistance functional, instead of local maxima.  The dual set of masks can be easily found using the 35 

orthogonality mentioned in the previous paragraph. 36 

The author is unaware of any study that develops this idea consistently. Probably, no such research was 37 

undertaken because its practical value seems rather questionable and many drawbacks are obvious from the 38 

beginning. Indeed, the precision of output direction would be rather low whereas the probability of wrong 39 

detection be rather high; such a low quality of detected features introduces serious obstacles for subsequent 40 

applications, for instance, that deal with grouping features into larger objects.  41 

This paper presents  a scalable low-level detector based on a quite different idea than the above duality 42 

principle.  The detector input is a point of image frame represented in R2 (i.e., input components are not 43 

integer, but real); a positive response includes a high precision (real) estimate of the direction; it has a low 44 

level of wrongly detected shift-invariant locations; it is robust with respect to additive noise. 45 

The detector was presented originally by (Khachaturov, 1995) as the Three Frequencies Method (the 46 

3FM). Later, the 3FM was combined with a post-processing filter to suppress too "trivial" shift invariant 47 



locations – those that the 3FM generates at any point of an image represented by a linear function of two 48 

arguments, (Khachaturov and  Moncayo-Muños, 2004).  49 

Presence of a directional vector in output is a common property for a detector of shift invariance and for 50 

an edge detector. This similarity may provoke some expectations about resemblance of other properties or 51 

criteria for these kinds of detectors.  For example, recall the principles declared by (Canny, 1986) for an 52 

optimal edge detector: good detection, good localization, and minimal response. One can try to impose these 53 

criteria for optimality of a detector of shift invariance. However, this idea proves to be futile.   54 

Indeed, for a linear function of two arguments, any location in the domain of definition satisfies the 55 

property of shift invariance. That is, in contrast to an edge detector that generates 1D output, a shift invariance 56 

detector may generate positive responses in 2D domain. Hence, it is impossible to apply at least one of 57 

Canny's principles – minimal response –  to a detector of shift invariance. 58 

A natural doubt arises: Do the shift invariant locations have any practical meaning, or not? 59 

(Khachaturov and  Moncayo-Muños, 2004) show an example of processing where shift invariant locations 60 

are applied to a well known computer vision problem. It is achieved by involving the 3FM in an intermediate 61 

processing that leads to a kind of robust features. Then these features are used as input data for an instance of 62 

the correspondence problem that is successfully solved. [This processing performs exhaustive multi-scale 63 

filtering of an input image by the 3FM. For a fixed scale, after a positive response of the detector, the filtering 64 

is interrupted temporary to trace the curve that would contain just detected shift-invariant element. After the 65 

filtering for a scale is over, traced curves are formally merged into larger objects. For two curves to be 66 

adjoined so, they must have at least one pair of shift invariant elements close in position and orientation. 67 

Then, such 'larger objects' of different scales are agglomerated into objects of even more complex structure by 68 

a similar rule (a couple of 'larger objects' constructed for adjacent scales must be merged if they have at least 69 

one pair of close shift invariant elements). These complex objects are then used to construct a synthetic image 70 

in the way described below in Section 3. Finally, the robust features are constructed at local minima of the 71 

synthetic image.] 72 

The present article refines mathematical fundamentals of the 3FM, describes the post-processing filter, the 73 

idea of which is suggested in (Khachaturov and Moncayo-Muños, 2004). As well, it presents quite new 74 

elements: (i) an analysis of the computational complexity, (ii) a comparison of the detector of shift-invariance 75 



versus Canny's edge detector, (iii) and quantitative experiments with simulated images that prove specific 76 

advantages of the 3FM.  77 

The author is unaware of prior works related to detection of shift invariance. So perhaps, the 3FM is the 78 

first detector of this kind, except the straightforward method mentioned above. 79 

The rest of the paper is organized as follows: Section 2 introduces the algorithm of the 3FM and then its 80 

theoretical fundamentals; Section 3 describes the post-processing filter and a related experiment with a real 81 

image; Section 4 presents an analysis of numerical complexity that is applied in Section5; Section 5 compares 82 

the 3FM with edge detectors. In particular, while treating the numerical complexity, the 3FM is compared  83 

with Canny's detector; Section 6 summarizes experiments: an emphasis on the experiments with simulated 84 

images is done because they lead to quantitative estimates of precision, robustness, and noise;   Section 7 85 

contains a conclusion. 86 

2. The 3FM  87 

We start this section from a description of how the 3FM works. Then an explanation of why it works follows. 88 

Being applied at point v∈R2 of the image frame, the 3FM constructs a set of rectangular windows centered 89 

at v and indexed by parameter α∈[0, π). Any window is obtained by rotation of a standard window at a 90 

standard (horizontal) orientation and α represents the corresponding rotation angle. The size of all windows is 91 

Kh×Lh , where K and L are natural numbers and h is a real number that represents scaling parameter to control 92 

size of the windows.  93 

While processing image content inside the windows, the 3FM computes values of three functions of α  − 94 

S-1(α), S0(α), and S1(α) − where for any option of index n, which can be −1, 0, or 1,  Sn(α)  is defined as 95 

follows: 96 

 97 

Sn(α)=(KL) −1 | |.                                  (1)  98 

To define Fk,l(α) of equation (1), each window of the sequence is regarded as a K×L-lattice formed by 99 

h×h-square cells; any pair {k,l} represents coordinates of a cell in the lattice; and finally, Fk,l(α) represents 100 

mean value of the image inside cell {k,l} for that window of the set, which corresponds to rotation angle α. 101 



Then,  {Sn(α)}n= −1, 0, 1 are subjected to the following rule: 102 

 103 

The 3FM generates a positive response at v iff there exists such α* that 104 

 105 

{ α* =arg local_max S0(α), and   simultaneously S-1(α*)= S1(α*)=0}.                           (2) 106 

 107 

The directional component of a positive response by the 3FM is denoted below by w. Conventionally, w is 108 

identified with the direction of that side of the window rectangle which contains K cells. In more strict terms, 109 

let "K-side" stand for that side of the above standard window at horizontal position, which has length Kh. 110 

Then, for a positive response of the 3FM: 111 

• The direction of local shift invariance  of the image at location v∈R2 is co-linear with the unit vector 112 

w obtained from the K-side by its normalization and rotation at angle α*; 113 

• The output of the 3FM is represented by the pair {v, w}. 114 

 115 

In the rest of this section, we explain why the 3FM works. 116 

First of all, let us justify the name of the 3FM. 117 

 118 

The above 2D-table  {Fk,l(α)}k=1,...,K;l=1,...,L has an equivalent 1D-representation by row {ft(α)}t=1,2,...,LK. This 119 

representation is as follows:  120 

Let (k,l)  be a one-to-one correspondence  between nodes of K×L-lattice and KL-row established by 121 

equation t=kL+l,  so ft(α) can be defined as Fk,l(α). That is, the two dimensional table of F is developed into a 122 

one-dimensional row of f as follows:   123 

  124 

{f1(α),f2(α), …, fLK(α) }  =      { F1,1(α), F1,2 (α), ..., F1,L(α),  125 

                                                   F2,1(α), F2,2 (α), ..., F2,L(α),  126 

                                                       …………………….  127 

                                                   FK,1(α), FK,2 (α), ..., FK,L (α)} . 128 

 129 



For this representation, formula (1) is equivalent to Sn(α)=(KL) −1 | |. 130 

It is clear that for n= −1, 0, and 1, the last expression coincides with three consecutive frequencies of 131 

discrete Fourier transform (DFT) of  f(t) (as usual, 'frequency' here is the conventional name of discrete 132 

argument of DFT-image of a function of one variable; it is opposite to the  'time' as the conventional name of 133 

argument of the original function.).  134 

This observation justifies the name of the 3FM. 135 

The key property that leads to the 3FM is the fact that any criterion of shift invariance in a 2D-image is 136 

equivalent to a criterion of periodicity of a function of one variable. More specifically, for the above lattice 137 

{Fk,l(α)}k=1,...,K;l=1,...,L  its local shift invariance  along the K-side is equivalent to periodicity with period L of 138 

the function{f(t)}t=1,2,..., LK.  139 

Theoretic foundation for the criterion of periodicity is presented by the following 140 

 141 

Theorem. Given a real function f(x) of period T, which for any x has expansion in Fourier series,  a 142 

natural number K, a small real number δ,  the functional ΩK  defined as  143 

  , then:   144 

(a) is a constant independent of K;  145 

(b) for any δ≠0, it is true that →0  as K→∞;  146 

(c)  ΩK(f, 1/K)= ΩK(f, -1/K)=0. 147 

 148 

Let us understand why Theorem leads to the criterion of the 3FM presented by expression (2). 149 

In practical terms, a combination of assertions (a) and (b) of Theorem means that, for sufficiently large K, 150 

| | is a local maximum of or, say, quite close to the maximum.  On the other hand, on the 151 

basis of the same theorem, if the period of periodic function f is unknown, we can try to estimate it as 152 

T(1+ *),  where  δ* .  153 

In the case under consideration,  f is not an arbitrary function, but a 1D-row obtained from the 2D-table F. 154 

If F is shift-invariant along its K-side, then f is periodic and its period is known a priori as L. So in this case  155 

* = 0 is a local maximum of As it was mentioned just above, this maximum can be detected 156 



by variation of , but it is easy to see that, if F is shift-invariant along its K-side, the variation of δ at δ=0 157 

affects the values of functional ΩK(f(x), δ)in the same way as the variation of orientation of the window 158 

that yields table F. This terminates semi-intuitive justification of the first half of criterion (2). 159 

The usage of S-1 and S1 in the second half of (2) is a straightforward application of Theorem (c). 160 

In the rest of this section, we prove Theorem. 161 

 162 

Proof. Affirmation (a) follows from T-periodicity of . Let us prove (b). 163 

Let f(x) =Σm cm exp(imx2π/T)   be Fourier expansion of  f . Then  , where 164 

=  . 165 

 166 

Thus  167 

 .                  (3) 168 

 169 

The series ∑mcm gives  a value of f(0) and hence converges due to assumptions of Theorem. Due to classic 170 

properties of convergence of series (Lang, 1983), the combination of this convergence with the one  171 

 leads to convergence of the series in the right-hand side of (3). Its sum is independent of K, 172 

meanwhile the module of the K-dependent expression  is bounded. This obviously implies (b). 173 

To prove (c), using as above Fourier expansion of f, integral  can be re-written as 174 

 After change of variables, y=x/K, each integral of this series becomes equal 175 

to , where γ is a common quotient for all m. Computation of the last integral is 176 

trivial and analysis of its results allows us to conclude that  Im=0 ⇔ mK≠N. But, if N=K±1, then mK≠N for 177 

any integer m, Q.E.D. 178 

 179 



3.   Post-Processing Filter for 'Slope-wise' Image 180 

Fragments 181 

Let us consider an input image represented by a 'slope-wise' brightness function, that is, by an arbitrary 182 

linear function of two arguments with non-zero gradient. For such kind of image, the 3FM signals with 183 

positive response at any point of the image frame because by construction all image locations are shift 184 

invariant along the direction normal to the image gradient.  185 

Detection of such objects may be regarded as undesirable in some application contexts.  186 

To keep under control acceptance/rejection of the 'slope-wise' image fragments, a post-processing filter is 187 

introduced by (Khachaturov and  Moncayo-Muños, 2004) to analyze each positive response of the 3FM.  188 

The idea of the filter is as follows. Let {Fk,l(α*)}k=1,...,K;l=1,...,L  be an image fragment represented in the 189 

same way as above for a positive response of the 3FM.  Then {Fk,l(α*)} is subjected to a standard statistical 190 

test, so-called verification of 0-hypothesis  (Johnson et al, 1997), applied to the hypothesis that the correct 191 

functional model for mathematical expectation of Fk,l(α*) is given by the function ϕλ,µ (k,l)=λ+µl , 192 

k=1,...,K;l=1,...,L , for some unknown real λ and µ.  193 

More specifically, the filter algorithm provides the following steps according to standard verification of 0-194 

hypothesis: 195 

• Construct the least square approximation (linear regression) of {Fk,l(α*)}k=1,...,K;l=1,...,L  by  196 

ϕλ,µ . That is, given the least square functional , the components 197 

of pair {λ*,µ*} are constructed in standard way to satisfy {λ*,µ*}=arg min ; 198 

• If  δpost_3FM, where δpost_3FM>0 is a threshold, then reject the current positive 199 

response of the 3FM. 200 

 201 

Threshold δpost_3FM controls the share of 'slope-wise'  fragments passing the filter. Its influence is studied 202 

empirically. Fig. 1 illustrates action of the filter for different values of δpost_3FM.  203 

[Fig. 1 refers to 'synthetic image' constructed by a "data structures-to-image" transform. This is an inverse 204 

transform with respect to the processing of the original image and it is constructed as follows. By a positive 205 



response {v, w} stored in a data structure, a function of two arguments is constructed so that its support 206 

coincides with the window that cuts table {Fk,l(α*)}k=1,...,K;l=1,...,L from the original image. Inside the window, 207 

this function is constant along direction w and represents a part of normal distribution along the normal 208 

direction wn with maximum at v. Then, a sum of such functions is constructed for all positive responses 209 

registered at all scales. And finally, the synthetic image represents a normalized negative of this sum.]  210 

The aim of introducing the synthetic image was a qualitative estimation of informational impact that 211 

contributes all discrete structures constructed during image processing. The experiments show a strong  212 

resemblance between the original and the synthetic image. Hence those data structures can be efficiently used 213 

to extract any kind of semantically relevant information that a human is able to extract observing a synthetic 214 

image. 215 

 216 

In addition, an unexpected effect can be observed by the experiments of Fig. 1: the boy's face in the last 217 

synthetic image looks like a usual shading portrait, then synthetic images in the counter clock-wise direction 218 

make visible some muscles under skin, and finally, the first image develops some skull bones. In other words, 219 

variation of threshold δpost_3FM  works as virtual focusing of depth to develop invisible details inside the boy's 220 

head.  221 

Informally, imitating the name of well known computer vision technique  – 'shape from shading', see a 222 

survey by (Zhang et al, 1999) –  this example shows a kind of 'volume from multi-scale image-sketch'-223 

technique.  224 

4. Numerical Complexity 225 

An algorithm that supports the presented approach must contain the following principal block operations: 226 

 227 

• Given α, construction of an instance of table {Fk,l(α)} presented in Section 2; 228 

• Computing three functions of α, {Sn(α)}, n= −1,0,1 according to equation (1) of Section 2; 229 

• Application of the rule of expression (2) of Section 2; 230 

• Post-processing filter of Section 3. 231 

 232 



They must be taken into consideration for an estimate of numerical complexity of the method. 233 

Analyzing complexity of these items in the rest of this section, we focus our attention on the number of 234 

multiplications only.  235 

Now let us consider the computation of  {Fk,l(α)} and {Sn(α)}. 236 

The table {Fk,l(α)}, in practice, can be computed in a slightly different way than the one described in 237 

Section 2: instead of mean values inside a lattice cell, the value of Fk,l(α) can be interpolated by four image 238 

pixels close to the center of (k,l)-cell.  239 

This way coincides with the one described in Section 2 for the size of lattice cells to be equal to the image 240 

pixel size.  For lattices of a larger size we also adopted this modified rule, however in such a case, it is applied 241 

not to the original image but to its convolution with a Gaussian averaging weight mask.  After convolution, 242 

each of four pixels that participates in the interpolation conveys information of many pixels of the original 243 

image. The larger size of the cell, the wider range of the bell-wise mask of the unit summary weight. 244 

Complexity of the convolution is ignored in actual analysis. (Section 5.2 presents a justification of this 245 

decision.) 246 

Then, in the same double cycle (with k and l as parameters of the cycle), the computation of an element 247 

Fk,l(α) can be combined with using this element for computation of {Sn(α)}, n= −1,0,1. 248 

Our code written in language C follows this scheme and carries out interpolation of Fk,l(α) by four closest 249 

pixels and then computes {Sn(α)}, n= −1,0,1.  250 

Given pair {k,l,}, the number of multiplications in the body of the inner cycle of our code is 19.  251 

Thus, for this part of the whole algorithm, the total number of multiplications for a single act of 252 

application of the 3FM is equal to 19KLNα, where Nα stands for the number of 'α's.  253 

For instance, in experiments by (Khachaturov and  Moncayo-Muños, 2004), Nα is optionally equal to 15 254 

or 7 for, respectively, the general application of the 3FM and for an application in the process of tracing a 255 

curve after a positive response of the 3FM. 256 

 257 

The rest of block-operations mentioned at the beginning of this section has a minor contribution into 258 

complexity.  259 



For instance, our implementation of the rule (2) works in two steps. Firstly, it revises three sparse tables 260 

{Sn(αi)},n= −1,0,1, i=1,…, Nα to finds such three successive values i1, i2 , i3 that interval should 261 

contain,  if any, α* that satisfies condition (2). At this moment the precise value of α* is unknown yet. It is 262 

determined at the next step as  α* =argmax S0(α) on the basis of a simple quadratic interpolation of {S0( ), 263 

S0( ), S0( )}.  264 

The number of arithmetic operations needed for this block-operation is linear in Nα, but it does not depend 265 

on KL. 266 

The number of arithmetic operations required for the post-processing filter is linear in KL, but it does not 267 

depend on Nα  268 

Both these numbers are negligible compared to the number found in previous item and may be omitted 269 

from future consideration. 270 

  271 

5. Comparison of the 3FM with Edge Detectors 272 

5.1. Meaning of Detected Features 273 

 274 

Unlike the strict mathematical meaning of shift invariance, the notion of edge in Computer Vision does 275 

not correspond yet to a single commonly accepted meaning.  276 

Most edge detection methods deal with a 2D grey-scale function of brightness and treat edges as local 277 

maxima of gradient's magnitude of this function. The direction normal to the gradient at an edge location is 278 

declared as its direction.  279 

Most techniques apply mathematical properties of maxima of the gradient function to develop an 280 

algorithm that would signal this property in digital images. In turn, 'digital image' means a discrete sample of 281 

the brightness function represented typically as a rectangular table of pixels.  282 



Two important lines in development of edge detectors can be found in surveys by (Mlsna and Rodriguez, 283 

2005), and by (Acton, 2005).  The former (and more traditional) line refers to the gradient and Laplacian 284 

methods, whereas the latter refers to those that involve partial differential equations.  285 

Likewise detectors of the former line, the presented detector of shift invariance belongs to the low level of 286 

a traditional image processing architecture that includes the low-level, intermediate-level, etc.. For the latter 287 

line, edges appear as a by-product of processing that extracts some larger objects, for instance, 'snakes' by 288 

(Kass et al, 1987). This processing is normally organized as an iterative scheme, and mathematically 289 

corresponds to optimization of a functional over input image.  290 

As to semantic interpretation of output, notice that for the latter approach, perhaps, there is no 'intuitive 291 

edge' at a location marked as an 'edge' found as a part of snake. It occurs because smaller details can be 292 

restored during construction of a larger object under a global optimization criterion. So, this approach may 293 

lead to construction of phantom edges or change position of real edges. 294 

Frequently, researchers use simulated images for studying properties of an edge detector. Typically, a 295 

function of one variable − 'step-wise', 'delta-wise', 'roof' function, etc. (Nalwa, 1993) − is used to construct a 296 

test-bed 2D image of edge. The image value along the direction of a test-bed edge is set to a constant. So, by 297 

construction, such test-bed images are shift-invariant. The 3FM yields a positive response to any of such test-298 

bed images and in this meaning, it is able to detect a wider class of objects than edge detectors.   299 

To compare furthermore notions of shift invariance  versus 'edges', let us go into some formal details. 300 

Let us regard image as function F: R2→R+ . 301 

 302 

Definition. Given domain D⊂R2, the local shift invariance of image F  
 inside D means that there exists a 303 

unit vector w∈ R2 such that the equation F(u)=F(u+εw) holds for all sufficiently small  ε∈R+ and all u∈D.  304 

 305 

The feature that describes shift invariance for domain D is formed by pair {v, w}, where v∈ R2 is a vector 306 

of location (say, center) of D and w∈ R2  is a unit vector that represents the direction of shift invariance .  307 

In general, a shift invariant domain D described by feature {v, w} generates a two-parametric family of 308 

shift invariant domains {Ds,u}s,u∈R, so that for all sufficiently small s and u,  Ds,u  satisfies the same property of 309 

shift invariance  as D, and is described by feature {v+swn +uw, w}, where wn is unit vector normal to w.  310 



That is, a positive response of the 3FM with output {v, w} leads, in fact, to positive responses {v*, w} for 311 

any v*∈Vv where Vv is a small neighborhood of v.  312 

The feature that represents an edge is described by a similar pair {v, w} with the same meaning of 313 

components as above. Let us remind again Canny's principles mentioned in Section 1, and more specifically 314 

the 'minimal response' principle, which means that any positive response {v, w} of a 'good' edge detector at 315 

pixel v should ban positive responses for pixels {v+εwn} closest in the transversal direction wn to v.  316 

A simple comparison of two previous paragraphs shows that 'minimal response' principle is meaningless 317 

for a detector of shift invariance.  318 

Note however that application of Canny's edge detector to a 'delta-wise' (or 'roof-like') image fragment 319 

generates two positive responses: one on each side of the local image maximum. That means that the Canny's 320 

principles being combined with the definition of edges as 'maxima of gradient's magnitude' do not match in 321 

some details with our intuitive idea of edge. 322 

 323 

5.2. Comparison with Complexity of Canny's Edge Detector 324 

Let us compare complexities of exhaustive filtration of an image by a combination of the 3FM with the post-325 

processing filter (this combination, for brevity, is denoted by the 3FM*) and, on the other hand, by Canny's 326 

edge detector (denoted below by CED) (Canny, 1986).  327 

These two detectors have many common properties. In particular, either of them  328 

 329 

i. may perform preliminary convolution with Gaussian averaging mask and can be used in a multi-330 

scale processing, 331 

ii. evaluates direction of output features,   332 

iii. allows tracing curves using a detected feature as seed; both approaches may perform tracing on the 333 

basis of the hysteresis principle: a higher level of threshold to catch a seed for tracing a curve, and a 334 

lower one to stop the tracing. 335 

 336 



In the two respective detectors, the step (i) is applied for different purposes:   in the 3FM*, it reduces the 337 

numerical complexity of construction of table {Fk,l(α)} and this step is omitted for small values of scaling 338 

parameter h, h<2; unlikely, in CED, it reduces noise.  339 

For both approaches, a combination of step (i) and (ii) inside an exhaustive image filtration loop extracts 340 

a crude set of features. So steps (i) and (ii) should be regarded as a part of low-level processing.  341 

Unlikely, the step (iii) should be regarded as a part of intermediate-level processing. After detection of a 342 

feature, both the 3FM* and CED may interrupt image filtering to trace the curve containing the feature, and 343 

later resume filtering. However, substantial difference in basic properties of outputs of the 3FM* and CED 344 

leads to quite different methods of tracing.  345 

These observations explain why we focus comparison of complexities only on the step (ii) of both 346 

detectors.  It was estimated already for the 3FM* in Section 4. Now let us evaluate the complexity of (ii) for 347 

CED. 348 

Algorithmically, the core operations of CED are as follows. For each direction of a set of directions 349 

parameterized by index α (of the same meaning as for the 3FM), CED convolves an image fragment with all 350 

square mask of set .  Masks of the set are computed beforehand to be optimal in a certain meaning. 351 

CED chooses the mask with the highest response and then compares it with a threshold. So if the highest 352 

response is greater than the threshold,  then an edge is detected and simultaneously its direction is estimated 353 

by the mask index. 354 

Practically, it means that the number of multiplications is equal to Cαr2 for an instance of application of 355 

CED, where Cα is the number of directions similar to  Nα of Section 4 and r corresponds to size r×r of each 356 

mask Mα. 357 

Now let us compare complexities of the 3FM* and CED for exhaustive filtration of an X×Y-image.  358 

Let us assume that K>L. For exhaustive filtration of an image by the 3FM*, there is no need to apply it at 359 

each pixel of the image: it suffices to apply it at each node of a lattice with cells of the size {L/3×L/3} inside 360 

the X×Y-image frame. Due to Section 4, it gives 19KLNαXY/(L/3)2 =9×19 XY (K/L) Nα multiplications. 361 

For filtering the same image by CED,  XY Cαr2 multiplications are required. The ratio of these two 362 

numbers is [9×19 (K/L) Nα] / [Cαr2]. 363 



For example, in experiments by (Khachaturov and  Moncayo-Muños, 2004), the following values are 364 

used: K=16, L=12, Nα=15. In literature (Mlsna and Rodriguez, 2005), for CED, the following values are 365 

mentioned: Cα=6, r=5. For these values the ratio is [9×19 × (16/12) ×15] / [6 ×25]= 19 × 2 ×3 / 5 = 22.8.  366 

The number_of_calls/sec for both approaches is compared experimentally using function clock() of C 367 

time library. For the same data as above in analytical comparison,  we have 1.7e+6 for Canny's kernel vs 368 

1.1e+5 for the kernel of 3FM. So the experimental ratio is slightly lower than the theoretical one. 369 

This ratio obviously can be reduced even more because no special optimization of parameters K, L, and 370 

Nα  has been undertaken so far. Anyway, it may be asserted that filtration by CED (without construction of 371 

edge map, which corresponds to step (iii)) is about 10 times faster than  by the 3FM*. 372 

 373 

5.3. Precision, Noise, and Robustness 374 

CED is designed to satisfy Canny's 'good localization principle' — a pixel that represents a detected edge 375 

should be as close as possible to its prototype in the real image. Unlikely, the component v of an output {v, w}  376 

of the 3FM* is robust but imprecise due to the observations presented in the end of Section 5.1.  377 

The directional component w of the 3FM* output is a unit vector computed from angle α*∈[0, π/2). Due 378 

to the logic of construction of α* described in Section 2, the precision of this real value is quite high. 379 

Unlikely, for CED, an edge direction is always rounded to a value of a few options.  380 

A singularity of the 3FM is that it works on the basis of simultaneous fulfillment of three independent 381 

conditions. In contrast, most edge detectors (for example, CED) are based on revision of a single condition. 382 

Thus, the 3FM is much more noise protected than conventional edge detectors. 383 

Let function N(S) denote estimated number of detected noise elements by a detector in the image of area 384 

S. The above singularity means that NCED(S) ~ [N3FM(S)]3. In other words, the noise detected by CED is 385 

proportional to a cubic function of the noise detected by the 3FM*.  386 

In the opinion of the author, these properties compensate completely the complexity drawback of the 387 

3FM* presented in the previous item, because they simplify significantly logic of subsequent applications that 388 

use output of the 3FM*.  389 

 390 



6. Experiments with simulated images 391 

In addition to the experiment on complexity mentioned in Section 5.2, experiments with simulated images are 392 

undertaken as a quantitative study of the 3FM. The collected experimental data give clear evidence of specific 393 

advantages declared in the beginning of this paper: high precision, robustness, and low level of false 394 

detections. 395 

Two kinds of images were used in our experiments: (i) a set of parallel dark and bright strips of the same 396 

width; (ii) images of sinusoid-wise brightness with respect to the direction normal to the one of shift-397 

invariance. The results are quite similar for both options, so below only the tests with strip-wise images are 398 

presented.  399 

The strip width is varied in experiments. The level of additive noise presents another variable. A sample of 400 

thousand images with different orientations is generated for each pair {width, level of noise}. In Fig. 2, the 401 

former of these variables is presented in an equivalent pictorial form, as a shot of content of the rectangular 402 

window that the 3FM operates with; the meaning of the window is described in Section 2. The latter is 403 

presented in the first text column of Fig.2. 404 

In experiments, the one-byte dynamic range D of grayscale image is divided into three equal parts so that 405 

dark and bright strips have brightness equal, respectively,  to D/3 and 2D/3. Uniformly distributed noise is 406 

added independently to all pixels of an image. Values of noise belong to [–LD /3, LD/3], where 'noise-level' L 407 

(the 1st column of Fig.2) belongs to [0, 1]-range. For example, no noise is added as L=0 and the maximum 408 

noise value (for L=1) can even transform a "bright" pixel to a "dark" one, and vice versa.  409 

The statistics corresponding to any instance of {width, level of noise} are presented in text columns 2-5 of 410 

Fig.2. The 2nd column contains the share of negative responses (misses) of the 3FM. For any positive 411 

response, the angle error  is computed as absolute value of difference between the estimated and the original 412 

direction of strips. Statistics of other columns of Fig.2 are based on this error: the  3rd column gives the share 413 

of positive responses with too large errors (conventionally, greater than 15°), the 4th gives the share of 414 

positive responses with not too large errors, and the 5th column presents standard deviation of angle estimates. 415 

The standard deviation is computed only by positive responses with "not large" errors.  416 



On the top of Fig. 3, the left and central images are respective examples of "no noise" and "maximal 417 

noise" images. These two images represent instances of input for experiments corresponding, respectively, to 418 

the first and the last rows of the third (from top to bottom) strip width in Fig.2.  419 

In the author's opinion, the results for the first three strip widths can be regarded as excellent. Directional 420 

estimates with an error about 1° seem quite acceptable for practical applications.  421 

Standard deviations for experiments that correspond to the first width are somewhat higher than for the 422 

second and the third. This is natural because non-uniformity of the images with the first width is the lowest for 423 

these experiments. [Non-uniformity of images is introduced in (Khachaturov, 1999) as quadratic form with 424 

the matrix ,  where  is image represented as function defined inside the image 425 

frame, , and S is a fragment in the image frame. For matrices A and B of the same 426 

dimension, the generally accepted notation 'A>B'  is used to indicate that inequality zTAz>zTBz holds for any 427 

vector z and quadratic forms based on respective matrices. Then, it is proved that if two different patterns 428 

painted on the same real object yield two different images,  and , so that then potential 429 

precision of estimates (found by image processing) of any physical parameter related to the object  430 

for than for  431 

For strip widths 4 and 5, the first two values of the 4th column are from 61 to 73%. This is worse than in 432 

above experiments but, as the author discovered, not too bad yet and still acceptable for practice. Indeed, 433 

while preparing this article, the software package used for Fig.1 was revised and some bugs in that version 434 

were found. Then, it has been found that with those bugs and without noise, the 3FM has a similar efficiency 435 

of 70%. Nevertheless, this does not present any obstacle for obtaining the results related to Fig.1.  436 

The gradual deterioration of the 3FM for higher frequencies of the strips can be explained by the border 437 

effects: as the rectangle window is rotated, a new portion of image enters inside the window and a portion of 438 

the window goes out. This violates some implicit assumptions in the justification of the 3FM presented in 439 

Section 2. The higher the spatial frequency, the stronger this violation.  440 

The same experiments are undertaken over an image of a constant brightness.  In such a case the estimate 441 

of direction is meaningless. The relevant statistic is presented by the number of phantoms (a phantom is an 442 

instance of a false positive detector response). The results are presented at the bottom of Fig.3. The right 443 

image on the top of Fig. 3 presents an instance of a constant brightness image corrupted by noise of the 444 



highest level. It is not surprising that about 17% of phantoms were found for such images. The number of 445 

phantoms decreases to 1% at the noise level 0.4 and is 0% for a lower noise level. 446 

Note  that while tracing long 1D objects, the phantoms detected with a low probability, say <10% , can be 447 

easily filtered out: rare single phantoms hardly would generate a long false curve because several successive 448 

phantoms have close directions with a negligible probability. So, even phantoms with frequency 17%, as in 449 

the last paragraph, do not present a serious obstacle for tracing long objects.   450 

 451 

7. Conclusion  452 

In contrast to conventional edge detectors that work with a higher precision of localization, the 453 

localization of an output of the presented Detector of Shift Invariant Locations (DSIL) is imprecise, but it 454 

yields very low noise and is robust. On the contrary, the directional component of DSIL is of a much higher 455 

precision than the one of edge detectors. DSIL is slower than edge detectors, but leads to a simple and fast 456 

curve tracing.  457 

DSIL erases any information about the local structure of a detected element: a positive response may 458 

occur as for a single as well as for a double line; the transversal behavior at a detected line may be arbitrary, 459 

for example, step-function, delta-wise function, etc. This property is very useful for tracing extended 1D 460 

objects "at once", without study of irrelevant details of a local object structure. 461 

Specific properties of DSIL open a wide range of possibilities for development of novel intermediate-level 462 

processing algorithms. Instead of image-to-image processing, which is typical for edge detectors, DSIL leads 463 

to simple conversion of an input image into some discrete data structures. The inverse transformation, from 464 

the discrete data structures to a synthetic image, was studied as well. The experiments show that the original 465 

images have a strong resemblance with the synthetic images; hence a significant amount of semantically 466 

relevant information is hidden in the data structures. 467 

Just one algorithm of the extraction of semantically relevant information from the data structures was 468 

studied experimentally and applied successfully to a well known computer vision problem: an instance of the 469 

correspondence problem, (Khachaturov and Moncayo-Muños, 2004).  470 

It is a challenge to study furthermore the algorithms of construction and use of such data structures.   471 



The author believes that a structural decomposition of image constructed by DSIL is useful for a wide 472 

range of computer vision applications such as: spatial analysis and reconstruction of 3D scenes with multi-473 

layer overlapping,  automatic construction of singular points for meshes used in computer representation of 474 

articulated objects, etc.  475 

For instance, part-based recognition (Ullman, 1997) is still a challenge for development of various 476 

techniques for shape decomposition – the approach by (Pan et al, 2009)  is a single recent example that can be 477 

mentioned here. The data structures constructed by DSIL give a quite new tool for this kind of problems.  478 

 479 
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