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ABSTRACT

Visual model of an object is presented as

composition of a model-shape function and a

model-pattern function. Non-uniformity of a

pattern is defined as a quadratic form related to

the gradient of intensity. For a planar model, it

is proved that a more precise estimation

responds to a greater non-uniformity. This is

applied to develop a class of single-view 3D-

pose estimators exploring extremely non-

uniform patterns. The estimators are of high

precision, fast, robust, and algorithmically

simple. Possible application is spacecraft

docking, or any robot problem permitting usage

of a visual mark (target) on remote object.

Keywords: model-based single view 3D-pose

estimation, spacecraft docking, robot

control, visual servoing.

1. INTRODUCTION

“More non-uniform picture painted on a

known object yields a higher precision for

visual tracking of the object pose”. This

affirmation might intuitively seem true for the

readers. First part of the paper represents a

strict mathematical basement for this

affirmation. It will be shown that this

affirmation holds only for planar objects. It

turns out that in general case the slope variation

of an object may contribute more Fisher’s

information than a pattern painted on the object.

The case of planar objects is developed

furthermore to a new 3D-pose estimator. As it

follows from the main theoretic result of the

paper, such an estimator has the highest

possible precision for planar targets. An

important property of method presented in the

paper is that it does not require preliminary

feature extraction from the target image. In

addition, it is robust, fast, and algorithmically

simple.

Past Works on Visual Estimators of 3D-Pose

The main application area for the visual 3D-

pose tracking is robot control. The mutual pose

of a pair of 3D coordinate systems is

determined as a set of 6 scalar parameters. The

problem is to estimate these 6 parameters by

processing an image of the remote object.



Typically, the processing can be subdivided

into two steps:

(i) Extracting features of the remote object

from its image

(ii) Estimating 3D-pose by the features.

A reliable, fast, and precise method for the

first step presents the main difficulty of visual

processing of a 3D-pose estimator. Assuming

that it is performed successfully, for a known

geometrical model of the object, the

reconstruction of 3D-pose itself may be

considered as a respectively easier operation.

Indeed, it is reduced to a strict mathematical

problem of inversion of a known map (say,

perspective projection) between two Euclidean

spaces of small dimensions. [Surprisingly,

many works dedicated to tracking of 3D-pose

by visual information are still investigating new

methods for the second part of the problem,

leaving the fist one out of consideration.]

There exist various classifications of

estimators of 3D-pose. The subdivision of

visual-based estimators of 3D pose as the local

and the global ones was proposed by Faugeras

et al  (1984).

The classic triangulation, which represents

the main tool of the star navigation, is a simple

example of local approach. Jarvis (1983)

developed a computer vision triangulation

method. However, dealing with a few local

objects of reference, the precision is low since

they represent a small part of visual

information. Another property of local

approaches is that they depend on the

performance of extraction of local objects. A

similar problem arises for the approach by

Abidi and Chandra (1995) proposing intrinsic

distances of the remote object to estimate its

pose. On the other hand, working with many

local features, the complicated logic of tracking

of features makes this approach inconvenient

for practice. Hel-Or and Werman (1995)

although developed a kind of local approach.

They propose a technique of uncertainty

matrixes, which allows to process and fuse in a

uniform way the data of range and intensity

images.

Kriegman (1992) developed a model-based

pose estimator, which finds 3D pose solving

polynomial equations for surfaces represented

as algebraic equations.

The methods of global approach map the

image into an Euclidean space where matching

with a model is performed. A mayor part of

such methods must extract local features before

mapping. As examples of the ''shape from

contour'' technique applied for pose estimation

may be mentioned works by Dhome et al

(1989), and by Dunker et al (1996). Other class

of global pose estimators makes use of Hough

transform. Tanaka et al (1985) apply Hough

transform to find known model in a 3D scene.

Some estimators work with Extended Gaussian

Image. The works by Brou (1984) and by Kang

and Ikeuchi (1993) follow this way. Vinther



and Cipolla (1994) proposed affine invariants to

find 3D-pose.

A planar target for 3D-pose estimate was

proposed by Khachaturov et al (1987). It allows

the measurement of parameters of its image

without preprocessing of image and extraction

of local features.

DeMenthon and Davis (1995) developed a

numeric method for inverting perspective

projection based on linear algebra. It works

when a model of the object shape is known and

the object features are already extracted from an

input image. [So this is a method devoted to the

second step of processing in the classification

above.] The advantage of this method with

respect to approaches of Lowe (1985, 1991)

and Yuan (1989) is that it does not require an

initial pose estimate and does not require matrix

inversion in its iteration loop.

The work by Laurin and Rioux (1995)

makes a contribution into the first part of the

problem. It apply a sine-coding technique to

range images. Then the Fourier transform (FT)

is applied to coded images to estimate 3D pose

of objects.

This technique is close to the one presented

in the actual paper, since both apply FT and

investigate the peaks.

The primary difference of these two

approaches is that they use different hardware.

It generates the semantic difference of the input

information to process: the range images and,

respectively, the intensity ones.

Then, there is a difference in the qualitative

properties of the two approaches.

The approach by Laurin and Rioux uses

assumption that there are a number of planar

objects on the scene. This approach depends

strongly on the performance of preliminary

segmentation of range images. The aim of the

segmentation is the separation of the planar

objects from their background. A wrong

segmentation leads to bad tracking of 3D-pose.

The method presented below performs

processing of intensity images of a known

target. An occlusion and other perturbations of

a wide range do not destroy the method.

However, not all applications allow using the

target. So, the presented method is more

special, but more reliable.

2. NON-UNIFORMITY OF A PATTERN

AND PRECISION OF ESTIMATES

A Mathematical Model of Input Information

A complete mathematical model of the

target image is defined as the quadruple {g, x,

I, G}, where each component is described

below:

Let Ω∈�
� denote an unknown vector of

parameters, and y denote a point of image

space ��. In particular, Ω may describe 3D-

pose of remote object, so �=6 in this case, and y

may be two-dimensional vector of a point on

the visual image frame, �=2.



By definition, the model of shape of an

object is a map x(y,Ω) representing a point x of

a manifold G of the same dimension � as the

one of the image space�� [In particular, for the

case of usual gray-scale images, a model of

shape recovers explicitly a point of G, which is

a 2D manifold representing surface of a 3D

object.] For a known vector Ω, as y spans entire

image space, x(y,Ω) spans a domain S of G.

[For the usual case of 2D images, we can

understand S as the domain of visibility on G.

To construct it, we can place a view-point on

the image of G, and while the view-point spans

the entire image, all visible points of G are

attributed to S.]

By definition, the model of pattern

painted on the model object is a known real

function g(x), where x is a point of G. [So, if G

is the surface of a 3D object, g(x) represents the

gray scale intensity of a pattern painted on G at

x∈ G.]

The image I(y) is defined as a random

function with expectation g(x(y,Ω)). The

random variables I(y1), I(y2) are assumed to be

independent for y1≠y2, and variance σ2=σ2(I(y))

does not depend on y. (Say, I is the signal plus

Gaussian white noise).

Estimate of Pose and Its Precision

Under an estimate Ω~ of Ω we

understand a point estimate [all used concepts

and facts of statistics can be found in a book by

Cox and Hinkley (1974)], i.e. any vector valued

functional Ω~ = Ω~ (I)∈� �
� defined on input

images.

An estimate is called efficient if it

provides minimum to the functional

ΩΩ−Ω∫ dIE
LR

)||)(
~

(|| 2 . So, in a sense, an

efficient estimate has the best possible

precision.

In terms of the model {g, x, I, G}, the

least squares estimate is given by
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where I(y) is an image, and the domain D

coincides with the image of G.

It is known that for the described model

{g, x, I, G}, the least squares estimate is

asymptotically efficient. For the case under

consideration, it means

 1
estimate} squaresleast  of {variance

}estimateefficient  of variance{
02 ⎯⎯ →⎯

→σ

for each component of the estimate.

Interpreting this property for a practical

application, we may accept that the least

squares method reaches the best possible

precision.

For any estimate, the lower bounds of its

variances are established by the Cramér-Rao

inequality. These bounds coincide with

variances of an efficient estimate. Hence, for

the variances of the least squares estimate, we



may, practically, accept values given by bounds

of the Cramér-Rao inequality.

Due to the Cramér-Rao inequality, the

covariance matrix of the efficient (i.e. having

lowest variances) estimate Ω~  is given as

1)
~

,
~

cov( −=ΩΩ FT , where F is the matrix of

Fisher's information. For model {g, x, I, G}, the

elements of Fisher’s

matrix Llk
lkFF ,...1,
, }{ == may be expressed as
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where Ω={ωk}k=1,…,L, and x={xn} n=1,…,M.

Comparison of Precision for Different

Non-Uniformities of the Target-Pattern

Using the above representation of the

Fisher’s matrix, we will study the precision of

least squares method in dependence of a

property of the pattern function g.

Let define non-uniformity of a pattern g

as a quadratic form with the matrix

xxx dPPQ T

Sg )()(∫= , where P(x) = grad g =

Mlx
g

l ,...,1}{ =∂
∂ , x∈S, and S is defined above.

Let {gi}i=1,2 be a pair of pattern

functions and
igQ  be their non-uniformities. Let

iΩ~ , i=1,2, denote the least squares estimates of

Ω given, in accordance with (1), as
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Let domain of visibility S does not

change for a sufficiently small variation of Ω.

Under these conditions, the matrix of

Fisher's information 
igF , i=1,2 is represented

as ydF
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For quadratic forms with the matrixes A

and B of the same dimension, we use generally

accepted notation A≥B denoting that for any

vector z, zTAz≥zTBz holds.

Using just presented notation and

assumptions, the following theorem is true.

Theorem 1. Let the model of shape x(y,Ω)

span a planar object G in 3D space and the

images of this object be produced as plane

perspective projections. Let the size of G be

much less than the distance between G and the

projection plane. If non-uniformities of two

patterns {gi}i=1,2 painted on G are related as

1gQ ≥a
2gQ for a positive value a, then

111

21

−−− ≤ gg FaF .

Proof. We can rewrite the given above

representation of
igF in the form

∫D

T
ii

T XdPPX y , where MxL-matrix X is defined

as Mm
Lk

x

k

mX ,...,1
,...,1}{ =

=∂
∂= ω , M=2, L=6. Since x(y,Ω)

represents a planar object and the target-size is

much less than the distance to the target, then X

almost does not depend on y. Hence,
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, where c is a constant of Jacobian used in the

change of variable. Hence, for any z∈RL,
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is true, as far as it is the same as
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which, in turn, follows from 
1gQ ≥a

2gQ .

However, (2) just means 
21 gg aFF ≥ from which

111

21

−−− ≤ gg FaF follows. �

For a=1, 
1gQ ≥

2gQ  means that the

pattern g1 is more non-uniform than the one of

g2. For z={zj} with zk=1 and zj=0 for j≠k, the

inequality 11

21

−− ≤ gg FF implies that the variance

of efficient estimate of each component ωk

given by 1
~Ω is not greater than the one given by

2
~Ω . In other words, one has obtained

Corollary 2. More non-uniform pattern

on a planar object provides higher precision of

efficient estimates of 3D-pose of the object.

Now let consider non-uniformity for

periodic patterns. Let x={x1,x2} and a pattern

function g2(x1,x2) be a bi-periodic function

restricted in a planar domain G. Let for both

variables the number of periods in G be much

greater than 1. Let the non-uniformity of pattern

g2 defined inside G be a positive definite form

and 
2gQ be the corresponding matrix. Let define

the pattern g1(x1,x2), {x1,x2} ∈ G, as g1(x1,x2) =

g2(αx1,αx2) with an α >1. Since G contains

many periods of g2 along as x1 as x2, then,

asymptotically for a large α, 
1gQ ≈α2

2gQ holds.

Repeating literally the scheme of proof of the

theorem, one obtains 
21

2
gg FF α≈ . Inverting it,

121

21

−−− ≈ gg FF α , and using Corollary 2, one

has kkgkkg FF ,
12

,
1 }{}{

21

−−− ≈ α  where {•}k,k are

diagonal elements of 1−
igF  for i=1,2. Since

kkgF ,
1}{

1

−  and kkgF ,
12 }{

2

−−α are the variances of

components of iΩ~ , i=1,2, we come to

Corrolary 3. Let all assumptions

preceding the theorem 1 be true. Let the model

of shape correspond to a planar object in 3D

space and the model of pattern be a periodic

pattern function, then, asymptotically,

proportional increasing of the frequencies of the

pattern function yields inversely proportional

decreasing of standard deviations of the

efficient estimates of all components of 3D-

pose.

Remark 4. At first glance, as the

theorem as its corollaries could seem trivial for

practical application, however it worth

mentioning that in general case of a non-planar

model of object, an affirmation similar to the

theorem is not true: More exactly, using

previous notation, the property

∫∫ ≥
S

T

S

T dPPdPP xxxxxx )()()()( 2211

in general case, does not imply
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A counter-example of this kind can be simply

presented for Pi and X considered as scalar

functions of one variable.

So, for non-planar G the affirmation of

the theorem is not true. The explanation is that

the slope variation for a model of shape may

contribute more Fisher’s information than non-

uniformity of pattern.

3. “THE BEST” SINGLE-VIEW 3D-POSE

ESTIMATOR

The Theorem and, specially, its

Corollary 3 hint a straightforward method for

increasing of the precision of a model-based

3D-pose visual estimator: the non-uniformity of

a pattern should be increased.

Theoretically, the only limitation for this

increasing is given by the pixel size and can be

found according to the classic Kotel’nikov-

Shannon-Whittaker sampling theorem,

provided a size of digital photos a target to be

fixed.

[In this respect, a natural question is

how to join variable distance to the target with

a constant picture size? Practically, it can be

done by the variation of camera-zoom.

Namely, the zoom parameter must be

included in a coordinated way into both

mechanisms:

• Into the control loop of TV-camera:

to provide a fixed picture size

independently of distance.

• Into the algorithm estimating 3D

pose: to update characteristics of the

optical system performing

perspective projection.

Of course, maintaining a constant

picture-size can be provided only for a certain

diapason of distances between the target and

TV-camera. It specifies the working range of

the corresponding system. The phrase at the

beginning of this section is valid as long as

such a virtual system stays in its working range

of distances.

The rest of paper deals only with 3D-

pose estimation. So, we are disregarding here as

the control of camera-zoom as the interaction

between both mechanisms, leaving these points

for practical developments.]

However, it is not clear how to process

an essentially non-uniform pattern: the least

squares method given by (1) does not work in

this case.

The spectral methods instead of the

straightforward least squares method

overwhelm this difficulty.

An Example Of “The Best” Estimator

With A Planar Target

This example follows the work by Khachaturov

(1998).



[To prevent misunderstanding, note that this

example presents an estimator processing

digital images of a planar target with an utterly

non-uniform pattern.  The only justification of

the prefix “the best” used for such an estimator

is given by Corollary 2.]

The Target and Parameters of Its Image

We use a square target. If a target size is

much smaller than the distance between the

camera and the target, then one may

approximately consider the perspective

projection of the square target as a

parallelogram. So, the target image parameters

(depicted on Fig.4ª) may be defined as the triple

of vectors {ix, iy, ic} in the following way.

The pair {ix, iy} consists, by definition,

of two vectors oriented as two connected sides

of the target-image parallelogram. The lengths

of ix and iy coincide, respectively, with lengths

of the related sides. ic is defined as the vector

connecting the image-frame origin with the

target image center.

In other words, {ix, iy} represents the

form, size, and orientation of the corresponding

target image; ic is the target-image translation

inside the frame.

The Pattern of Target

The model of pattern is given

functionally as

)]2cos()2cos(1[),( 221121 xfxfAxxg ππ+= , 

 (3)

where {x1,x2}∈[0,1]×[0,1]. The term ''1'' is

introduced to make the model of pattern non-

negative to look like the intensity of a gray-

scale image. Varying f1 and f2, one can reach

non-uniformity as high as the pixel size

permits.

Properties of the Pattern

An explicit calculation of gQ for g of (3)

shows that as f1, f2→∞, gQ  tends to a diagonal

matrix with its diagonal elements to be

proportional to squares of the frequencies f1, f2.

So, by increasing of f1, f2, due to the corollary 3,

gQ can be made as large as necessary for the

precision of pose estimates; the pixel size is the

only limitation for the increasing.

If g of (3) is defined on the entire plane,

its FT is given by G:

∫ ∫
∞

∞−

∞
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+− == 21
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(4)

It is equal to zero everywhere except the five

points

u(0)={0,0}, u(1)={f1,f2}, u(2)={ -f1,f2}, u(3)={ f1,-

f2}, u(4)={- f1,-f2}. (5)

(For details of the reduction of (4), we refer to

Brigham (1974)). The theoretic result of (4) is

not getting much worse after restriction of the



entire plane of definition of g on the unit square

[0,1]×[0,1]: Fig. 1ª gives visualization of g of

(3) defined in the unit square for f1=f2 =8, and

Fig. 1b is the plot of log(1+|G|), where G

represents FT of g.

(a)

(b)

Figure 1. A simulated pattern (a) and (b) log of
its Fourier transform

Due to Parseval's theorem (Pratt (1978)),

||g||2=||G||2. So, all distributed in spatial domain

energy of the functional pattern (3) passes in

the spectral domain into the energy

concentrated at the points (5). As it follows

from the next well-known property, a similar

relation between the model of pattern and its FT

is valid if a linear transformation H is applied to

the plane of definition of g:

Proposition 5. (Egorov and Shubin,

1992). Let x and u be vectors of the same

dimension, G(u) be the FT of the function g(x),

then the FT of g(H(x)), is )( 11 uTHGH −−

where H-1 is the inverse of H, • is determinant

of •, and •T is transposition of matrix •.

Estimation of Size, Form, and

Orientation of the Target Image

The estimation of {ix, iy} follows the

block-operations of Fig.2.

The FT of the first block of Fig.2 is

applied to a small fragment of the frame

containing the target image.

The extraction of non-zero high-energy

points in the second block can use (4) in the

following way. Let G(v) be the FT entering the

second block. Due to (4), at any of the four

unknown non-zero high-energy points v(k), the

values |G(v(k))|k=1,...,4 are about four times less

than |G(v(0))|, v(0)={0,0}. So, for an ε being a

small positive value, the algorithm can use

|)(| )0(
4

1 vGε−  as a threshold to localize v(k),

k=1,...,4. In other words, if at a non-zero point

v, |G(v)|> |)(| )0(
4

1 vGε− holds, then v is a good

candidate to be one of v(k), k=1,...,4.

The estimation of matrix H in the third

block is based on the relation (Proposition 5)



between the high-energy points 4,...,0
)( }{ =k

kv of

g(H(x)) and those 4,...0
)( }{ =k

ku  of a known

calibrating image g(x).

Let },,{ 000
cyx iii  be the target-image

parameters for a calibrating 3D-pose, and

,4,...,0},,{ )(
2

)(
1

)( == kuu kkku  be its high-energy

points. Due to proposition 5, one may write the

equations [u(k)]T=[v(k)]TH, k=0,…,4, where H is

unknown and u(k), v(k) are known. The equation

for k=0 gives no information for the search of

H. The remaining four equations spawn eight

equations in coordinates to find four elements

of H. An application of least squares method

terminates the estimation of H.

.

        H~

Figure 2. The block-diagram of the estimation of ix and iy

Estimation of the Translation Vector of

a Target Image

Unlike the search of {ix, iy}, which

works only with coordinates of high-energy

points, the estimation of the translation vector ic

explores the values of energy at these points. It

is assumed that {ix, iy} are known already.

Let w be the center of a window mask

M of the same form, size, and orientation as the

target image, Gw be the FT of the image inside

M, and function F be defined as

F(w)=|Gw(v(1))|2 + |Gw(v(2))|2 + |Gw(v(3))|2 +

|Gw(v(4))|2, where the points v(i), i=1,...,4 are

four non-zero high-energy points of Gw(v). So,

the value of F(w) contributes a part of the

whole energy of the image inside M.

The estimate ci
~ of ic is defined as

ci
~ =arg max F(w) (6)

The rest of item gives a justification of

this rule and reduces it to a simple algorithm.

Let find how F depends on w and ic

Proposition 6. Let D1 denote the domain

of intersection of the test window and the target

image. Then for the target pattern given by (3)

with f1, f2 >>1, the mathematical expectation EF

of F is asymptotically proportional to the area

of D1, provided the following assumption to be

true:

Assumption. The image inside the difference of

two sets {a window mask \the target image}

makes no contribution into the magnitudes of

{Gw(v(i))}i=1,...,4.

Note that practically the assumption

means that the image inside the complement of

The
Fourier
transform

Extraction of the
high-energy
points 4,...,0

)( }{ =k
kv

Estimation of
the matrix H

xi
~  = H~ ix°

yi
~ = H~ iy°



the target image has no energetic noise with

respect to main frequencies of the target

pattern.

Proof. In spatial coordinates x1, x2, the

energy of the image ),( 21 xxI  inside a domain D

is 2121
2 ),( dxxdxxIE

D∫= . Let D be the test

window and the intensity function inside the

background of the target image be zero, then E

= 2121
2

1

),( dxxdxxI
D∫ . Substituting g(H(x))

instead of I, we see that, for sufficiently large

D1, E is asymptotically proportional to the area

of D1 due to periodicity of g. Returning to the

representation of energy in the spectral plane

(Parseval's theorem), all energy of FT Gw(v) of

the mask is concentrated at the points {vi}i=0,...,4.

Hence, for the case of zero-background, F(w) is

also proportional to the area of D1. To finish the

proof, note that the assumption implies the

same effect as zero-valued background of the

target image.�

The area of D1 can easily be found as an

explicit function of the w and ic for known ix, iy.

Figure 3. The auxiliary vectors to find the
area of intersection of the mask and the
target image. The target image corresponds to the

parallelogram formed by vectors ix and iy. Another
congruent parallelogram represents a mask. Translations
of target-image and mask are ic and w, respectively. So,
the vector connecting origins of two parallelograms is ic –
w. Its projections on ix and iy are denoted by wx and wy.

Indeed, decomposing the vector ic - w

into wx+wy, where the vectors wx and wy are

parallel with ix and iy, respectively, Fig. 3, we

see that the area in question is equal to the

module of vector product |(ix - wx)× (iy - wy)|.

So, if the intersection is not empty, EF

has the explicit form EF (w, ic)= B|( ix - wx)× (iy

- wy)|, where the constant B is unknown.

Otherwise, EF (w, ic) = 0. The analytical

geometry technique gives expressions for wx

and wy:
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*
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where unit vectors ** , yx ii  are defined as
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At last, treating the values of F(w) as

random observations of the known function EF

(ic,w), the unknown vector ic (and, by the way,

the value B) can be estimated by usual least

squares method. Thus, the estimation (6) of the

vector ic is reduced to

2
|)(),(|arg~ ∑ −=

n nncFc FiEmini ww ,

where EF is a known function and the set {wn}

consists of known test positions of the mask

center. We are omitting further details of this

well-known problem.



3D-Pose Reconstruction

For given parameters {ix, iy, ic} of a

target-image, the recovering of 3D-pose is well-

known problem of inversion of the perspective

projection: find space pose of the square by

characteristics of its projection.

For example, 3D-pose may be

represented as the triple {ex, ey, rM} defined in

the caption of Fig. 4. The image parameters {ix,

iy, ic} are perspective projections of {ex, ey, rM}.

The reconstruction of 3D-pose means building

{ex, ey, rM} by {ix, iy, ic}.

The methods by DeMenthon and Davis

(1995) and by Abidi and Chandra (1995) deal

with such a problem. Since they have good

computational properties, the rest of 3D-pose

estimation can follow either method.

Nevertheless, we present here another scheme

(perhaps, it is not new) just for methodical

purposes: maybe, it not so good as mentioned

methods, but it is very short and explicit.

Let BA ee , and Ce  ( Ce  is omitted on

Fig.4) be the unit vectors outgoing from P to

the directions PA, PB, and PC, containing the

end-points of ix, iy, and ic, correspondingly. For

known vectors cyx iii ,,  and the position of P

[which is a known characteristic of the optical

system], BA ee ,  and Ce  may also be considered

as known (we are omitting here their trivial

explicit expressions). Representing Mr  as s Ce ,

where s is unknown distance between P and the

target center, the next equations hold obviously

CAsyCBsx seeueseete −=−= , , (7)

where ts and us are unknown factors depending

on s.

The property of being unitary vector for

ex and ey yields square equations for ts and us:

),(),(1 yyxx eeee == , where (•,•) is scalar

product. Reducing it to

22 ),(21 seestt CBss +−= =

22 ),(2 seesuu CAss +− , one has the roots

222
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222
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(8)

where s is unknown parameter. Due to (7),

orthogonality of ex and ey yields the equation

for s:

),()],(),([

),(0
2

ABssCAsCBs

CAsCBs

eeuteeueetss

seeuseet

++−

=−−=
 (9)

Finally, substitution of the roots (8) of ts and

us into (9) yields four polynomial equations for

possible values of s. Real positive roots of these

equations give, by means of (7-8), all options

for { Myx ree ,, }.

[Every reconstruction of 3D-pose by

perspective image of a planar target is

ambiguous due to the number of roots of these

equations. To kill this ambiguity for a practical

problem, for instance, one can use a few planar

targets with different orientations.]



(a) (b)

Figure 4. (a) Image frame with an image of the target. The target image parameters {ix, iy, ic} are
depicted schematically inside the frame. (b) The same {ix, iy, ic} as projections: Orthogonal vectors ex, ey belong to
the target plane, are attached to the target center, are parallel and of the same length with corresponding sides of the target
square; ix and iy are planar perspective projections of ex and ey. Vector rM connects the center P of perspective projection
with the target center

Remark: Expressing the Control Law

in Sensor Space

Note that for an application in robot control,

in fact, it is not obligatory to perform the

inversion {ix, iy, ic} →{ex, ey, rM} developed

above. Moreover, there is no need to find target

image parameters {ix, iy, ic}. Instead, one can

express the control goal directly in the spectral

Sensor Space and introduce it in robot control

loop. (See in this relation the work by Martrinet

et al (1997), which, in particular, contains

necessary references on Visual Servoing). For

the problem under consideration, the sensor

space can be formed as R15 = R3 ×R3×R3×R3×R3,

where each R3 corresponds to possible values of

a peak of the function |G(vi)| and its vi. It means

practically, that having some relation between

3D-pose and behavior of peaks in spectral

domain, the aim of control is to force peaks to

be in proper places and with proper magnitudes.

4. EXPERIMENTS AND DISCUSSION

Experiments
The necessary and sufficient condition,

under which the processing of p.3 works, is a

good extraction of non-zero high-energy points.

An experiment demonstrates this ability of

the method. The Fig. 5a displays a photo that

was performed by the standard camera of O2™

workstation of Silicon Graphics. The left target

on the photo has frequencies f1=f2=16 of the

pattern function g corresponding to (3). The

right one has f1=f2=32, but its pattern is hardly

seen due to the resolution of camera. The Fig.5b

cuts 128x128-fragment of this photo. The



log(1+|Fourier_Transform(Image_fragment

)|) is plotted in Fig.5c. The four non-zero high-

energy points are clearly seen on the plot. The

method works well in spite of a considerable

occlusion of the target and relatively bad light

condition.

(a)      (b)

(c)

Figure 5. (a) - A real digital photo; (b) - its 128x128 fragment with the target image; (c) - the
Fourier transform of the fragment.



Comparison with the Least Squares

Estimates

Potential precision of the method presented

in p.3 coincides with the least squares method

(LSM) given by (1).

Indeed, FT is reversible and, hence, the FT

of a target image contains the same information

as the image itself. Then, after FT of an image

of our planar target, all Fisher’s information of

the original pattern is hidden in the positions of

FT-peaks and their values. Consequently, the

method of p.3, based on the processing of the

peaks, takes into consideration the whole

information of the original image.

Hence, as far as LSM is asymptotically

efficient, the presented method also has this

property. Consequently, in the class of single-

view model-based estimators using planar

model, the method reaches the best possible

precision increasing frequencies of the pattern.

Let compare the influence of non-

uniformity on the presented method and LSM.

We already mentioned that high non-

uniformity of a pattern is a strong obstacle for

practical application of least squares. Indeed,

for such a pattern, the least squares functional

has many local extremums, and in addition, a

slight distortion of image due to optical

transformation of camera and secondary effects

does not permit to reach a good accordance

between an image I(y) and its model g(x(y,Ω))

even for the case of exactly known vector Ω.

On the contrary, the presented method

works in such a case. [Provided the control of

zoom mentioned at the beginning of p.3.] So, in

terms of the model {g, x, I, G} where g is

variable and x, I, G are fixed, we may affirm to

the following: unlike the presented approach,

LSM can not reach in practice the highest

precision that the model permits.

Let consider the influence of perturbations.

We can interpret perturbations (integrating

altogether all kinds of them: an image

distortion, an occlusion of target, a partial

shadow, etc.) as points in some functional

space. The norm of an element of this space

evaluates the magnitude of corresponding

perturbation. For a pattern corresponding to (3),

a perturbation transforms delta-wise FT-peaks

into bell-shaped peaks. Irrespectively of the

exact definition of this functional space and the

norm, a perturbation affects FT-peaks in

dependence of the value of its norm: A wider

and lower bell responds to a perturbation with

greater norm.

In these terms, the presented method is

valid in such a range of values of a perturbation

norm, which provides distinguishability of FT-

peaks. We may say that the presented method is

robust for perturbations belonging to this range

of values of the norm.

Although we do not express explicitly this

range, we can compare the presented method

and LSM on the example of Fig. 5b-c. An

occlusion like on Fig. 5b surely destroys



estimation based on LSM. It is not the case for

the presented method: a good extractability of

the relevant FT-peaks on Fig. 5c proves that this

perturbation leaves the image inside the range

of robustness.

Computational Aspect

We discuss here only the novel part of the

presented algorithm, i.e., its first part producing

{ix, iy, ic}.

Its massive part consists of few  (4 or 5)

operations of the Fourier transform. The

complexity of fast FT of a n×n-fragment is

O(n2logn). For instance, for n=128 as in

experiments of Fig. 1, 5, it yields about 105

operations per FR. This value is close to

provide all necessary computations inside the

picture acquisition cycle by a single processor.

However, FT has excellent properties to be

processed by a parallel computation, and there

are FT-co-processors able to perform this

routine part of the presented method practically

instantly.

All the rest of algorithm requires a few

thousand operations. So, for development of a

real-time system based on the presented

method, the computational complexity does not

present any obstacle.

The presented method is straightforward: it

does not require any improving of input image;

it does not depend on extraction of local

features (edgels, for example), or their posterior

aggregation, etc. Such a property provides

reliability of the method. On the other hand, if

real technical factors will violate the

mathematical model of p.2, it permits a

relatively simple analysis of the influence of

such factors.

An Extension of the Presented

Method

The choice of the function g of (3) is

based on properties of its FT. In fact, any

pattern function with appropriate FT may be

chosen. This property is that the FT must be

zero almost everywhere except a few points of

spectral plane, at which it must have delta-wise

character. Choosing such a function in spectral

domain, one can construct a new pattern

function by means of the inverse FT of this

function. [However, it should be taken in

account, that the inverse may turn out to be a

complex function!] Then, printing the inverse,

one obtains a good target pattern itself. We can

use it instead of g, with all the rest of

processing of p.3 to be the same.

A Problem: Extension of the Approach to

Non-Planar Targets

As it follows from the results of p.2, the

slope-variation of a target contributes an

additional Fisher’s information. Theoretically,

it can improve considerably the precision of 3D

pose estimates based on a planar target.

For instance, one can imagine the model of

shape of the target as a kind of a “fractal”



quasi-planar object similar to light reflectors of

a car. An example of such a target is presented

on Fig. 6. It can be designed to reach a very

high slope-variation staying the target in a

small volume.

However, the technique of p.3 is based on

the supposition that the Fourier transform of a

target image is just sum of a few δ-wise peaks.

Otherwise  [i.e., if as the intensity image of a

target as its FT is rather complicated function],

the technique proposed in p. 3 does not work.

Figure 6. An example of non-planar

target.

Our preliminary experiments with such

non-planar targets gave a negative result: the

FT of a target image has too many peaks. It

does not permit a simple processing of target-

images.

So, the problem is how to choose an

appropriate target shape and its pattern for its

FT to have a small number of peaks? Or, if it is

impossible, how to process practically such

kind of targets, which potentially can increase

significantly the performance of 3D pose

estimators?

[Of course, LSM corresponding to the

formula (1) is a formal solution of such a

problem. However, it works only for the case

when the process of measurements corresponds

exactly to the model {g, x, I, G} of p.2.

Otherwise, by the same reasons as above, it

does not work in practice for the case of high

Fisher’s information.]

5. CONCLUSION

The paper presents a new approach to a

numerical comparison of precision of the 3D

pose estimates for any patterns painted on a

target. For the special case of planar targets, a

method based on the Fourier transform if

developed to reach the highest possible

precision. It is algorithmically simple, fast, and

robust. The approach can be applied to any

mutual navigation problem that allows usage of

a visual target on the tracked object, for

example, to spacecraft docking, or to some

problems of industrial robotics. The problem of

tracking 3D-pose by processing of non-planar

fractal targets with a high slope-variation is

formulated.
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