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Abstract. The standard Brightness Constancy Equation 
states spatiotemporal shift-invariance of the input data 
along a local velocity of optical flow. In its turn, the shift-
invariance leads to a periodic function of a real 
argument. This allows application of a known test for 
periodicity to computation of optical flow at random 
locations. The approach is valid also for higher 
dimensions: for example, it applies to a sequence of 3D 
tomography images. The proposed method has a 
reasonably high accuracy for continuous flow and is 
noise-tolerant. Special attention is paid to weak-signal 
input. It is shown that a drastic reduction in the signal 
strength worsens the accuracy of estimates 
insignificantly. For a possible application to 
tomography, this would lead to an unprecedented 
diminution of harmful radiation exposure. 

Keywords. Optical flow, periodicity-based processing, 
preventive tomography, night-vision. 

Computación de Flujo Óptico Basada 
en Periodicidad 

Resumen. La ecuación estándar de 'brillo constante' 
establece invariancia espacio-temporal de  traslación a 
lo largo una velocidad local de flujo óptico. A su vez, la 
invariancia de traslación lleva a una función periódica 
de una variable real. Este permite aplicar una prueba ya 
conocida de periodicidad para el cálculo de flujo óptico. 
Este enfoque es válido también para una dimensión 
más alta: por ejemplo, es aplicable  a una secuencia de 
imágenes tomográficas en tres dimensiones. El método 
propuesto tiene precisión razonablemente alta para 
flujos continuos y es tolerante al ruido. Se pone especial 
atención a la entrada de señales débiles. Se muestra 
que una reducción drástica en nivel de señal lleva a una 
disminución de precisión de estimaciones muy leve. 
Para una posible aplicación tomográfica, esta 
propiedad implicaría una reducción sin precedentes de 
la exposición a la radiación que es nociva. 

Palabras clave. Flujo óptico, procesamiento basado en 
periodicidad, tomografía preventiva, visión nocturna. 

1 Introduction 

It turns out to be that for an image sequence, the 
pair {Velocity of Optical Flow (VOF); a patch of the 
input dataset} naturally defines a periodic function 
of a real argument. Using this observation, a novel 
local detector of optical flow is proposed in this 
paper. The detector treats a family of functions 
indexed by velocities of a range; any function of the 
family is subjected to a test for periodicity, and the 
estimate of VOF is set to the index of the 'most 
periodic' function in the family.  

We show that a particular test for periodicity 
chosen in our implementation of this scheme 
provides the detector with noise-tolerance and a 
reasonably high accuracy while treating datasets of  
a continuous flow.  

Then we show why the noise-tolerance is 
relevant for applications. In particular, it turns out to 
be that determining optical flow for a class of 'non-
hard' datasets can be done practically without lost 
of performance by images of a much lower quality 
than usual. As a practical consequence of this 
property, the exposure while shooting images for 
the purpose of automatic determining optical flow 
can be reduced in several hundred times compared 
to the images needed for a visual analysis by an 
expert. This opportunity opens in particular the way 
for a new technology in the medical image 
processing: a preventive tomography.   

Noise-tolerance is studied here only with 
respect to Poisson noise because it overrides all 
other kinds of noise for the weak-signal images 
which are of a particular importance for 
applications. 
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1.1 Prior approaches 

The problem of determining optical flow has been 
attracting numerous researches since the early 
1980s. Interest to this field is stimulated by 
increasing demand from applications that deal with 
temporal sequences of images: for video 
compressing, security systems, medicine, traffic 
control, and robotics — just to mention some. 

Optical flow is a vector field in the image frame. 
Any vector of this field signifies velocity. In turn, the 
term velocity allows two interpretations: (i) the 
velocity of a projection of a real point; (ii) the 
velocity of image motion regardless of how the 
image content represents the real objects.  

These two meanings do not always coincide 
(Marr and Ullman, [21], Horn, [12]). To realize that, 
imagine a thin black ring on the white background 
and assume that the ring diameter grows from shot 
to shot in an input sequence of shots; meanwhile 
the ring centre does not move. Under these 
assumptions it is impossible to answer questions 
like: "Has the ring a non-zero angular velocity?" or 
"Is the ring a part of the background", or "Is it 
getting closer to the observer?" On the other hand, 
the growth of the ring diameter can be determined. 
So, only the meaning (ii) is valid for this example. 

However, the velocity in the meaning (i) can be 
determined, provided that the ring and background 
are painted with substantially non-uniform textures. 

Following the taxonomy of Fleet and Jepson, 
[9], full velocity or just velocity is a vector in the 
above meaning (i); component velocity or normal 
velocity  in the meaning (ii). Corresponding fields 
in Horn's taxonomy, [12], are motion field and 
apparent motion. 

Considering a method, it is important which of 
the two interpretations is assumed because if 
determining optical flow is not feasible by a local 
processing, it might become feasible in a wider area 
and under additional assumptions. This ambiguity is 
known as aperture problem, [21]. For instance, 
substitute the ring mentioned above with a 
rectangle; then velocities can be computed locally 
only for the corners of the rectangle; assuming the 
rectangle to be stiff, the corner estimates can be 
extrapolated to the whole perimeter of the 
rectangle. 

In this respect, the output of our detector 
represents an estimate of velocity, but in a 

degenerated case it automatically becomes an 
estimate of component velocity. 

Beginning with the classic works dedicated to 
optical flow algorithms (Horn and Schunck, [13], 
Lucas and Kanade, [20]), the starting point for most 
approaches is the standard Brightness Constancy 
Equation (BCE), 

)1.1()1,,(),,( +++= tvyuxItyxI  
where ),,( tyxI  is the intensity of a pixel (x, y) at 
time t and the flow is { ),,( tyxu  , ),,( tyxv }. Below, 
notation α={ ),,( tyxu  , ),,( tyxv } is applied for 
brevity. 

BCE is violated when discontinuities, 
occlusions, shadows, etc., hold. The modern 
methods compete mainly in trying to improve 
performance for such special cases. As Baker et al. 
indicate in a survey ([2], Eq.1), most existing 
algorithms pose the problem of determining optical 
flow as the optimization of a global energy function 
EGlobal= EData+λEPrior, where the Data Term 
measures how consistent the optical flow is with 
input images, and the Prior Term favours certain 
field over others. In practical terms, the data term is 
responsible for situations when BCE holds, 
whereas the prior term − for the special cases.  

The novelty of our approach concerns the data 
term only. It should be emphasized from the 
beginning because the datasets of the commonly 
accepted modern benchmarking platform 
(Middlebury open evaluation database, Baker et al., 
[2]) have a strong bias to the special cases. 

Following [13] and [20], the differential methods 
rely upon Optical Flow Constraint Equation (OFCE) 
derived from BCE: 
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Since eq. (1.2) leads to an ill-posed problem, it 
must be regularized by the prior term. From eq. 
(1.2), Horn and Schunck, [13], derive a system of 
differential equations in partial derivatives that can 
be solved by processing images of a sequence 
inside the full frame; so their method is global and 
its solution is constructed by an iterative relaxation 
algorithm. In contrast, the method of Lucas and 
Kanade, [20], is local, it can be applied inside a 
patch of the frame; numerically, it can be regarded 
as an instance of the least squares method. Bruhn 
et al. [7] present a combined local-global method. 
Nagel [22] and Uras et al. [33] deal in their 
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approaches with partial derivatives not only of the 
first order, but of the second as well. Variational 
methods (for example, those of Zimmer et al. [36] 
and Werlberger et al.[34]) are derived from the Horn 
and Schunck, [13], approach by modifications of the 
original data and prior terms. Direct matching of 
patches for different images of a sequence is an 
instance of non-differential approaches. It does not 
develop the data term far beyond BCE. The 
technique by Anandan [1] is of this kind; it makes 
use of a Laplacian pyramid and a coarse-to-fine 
matching strategy. This technique weakly employs 
priors in the form of a smoothness constraint on the 
velocity estimates; the solution is based on Gauss-
Seidel iterations. A two-stage matching technique is 
presented by Singh [30]. 

One more class of the methods is based on 
spectral techniques that make use of Fourier 
domain to solve the original spatiotemporal 
problem. This class includes also the energy-based 
methods like that of Heeger [11] and the cross 
correlation and the phase correlation methods 
(Reddy and Chatterji [26]). The phase-based 
technique of Fleet and Jepson [9] makes use of the 
phase information for measurements of component 
velocity; it deals with a family of spatiotemporal 
velocity-tuned filters that permits multiple estimates 
within a single neighbourhood; the resolution of 
individual estimates is reasonably high and so, if 
the neighbourhood represents a patch of a real 
textured surface, these multiple component velocity 
estimates lead to a single estimate of the patch 
velocity.  

Brox and Malik [6] introduce rich descriptors 
into variational technique to cope with a large 
displacement flow; Xu et al., [35], introduce 
segmentation for a better accuracy. Goldluecke and 
Cremers [10] show how multi-labelling problem can 
be applied for determining optical flow. Methods like 
those of Jepson and Black, [16], Jojic and Frey, 
[17], Sudderth et al, [31]) etc., deal with layered 
optical flow formed as sum of several flows. 
Usually, they work as extraction of a parametric 
motion for each layer. Genetic algorithms also can 
be used for computation of flow (Tagliasacchi, [32]). 

The first comparative study of various methods 
was performed by Barron et al, [4]. It was a long-
time reference point for subsequent approaches. 
Nowadays the Middlebury open evaluation 
database, [2], plays the role of the main 

benchmarking tool. It provides a considerable 
progress of objectiveness for methods evaluation 
since the authors do not have access to the ground 
truth of the evaluation datasets. It is also important 
that the evaluation system automatically generates 
a series of publicly available reports which contain a 
comparison of performance of all methods 
evaluated so far. Any new method submitted for 
evaluation automatically changes the content of the 
reports.  

The standard Middlebury datasets processed 
by our method were submitted to the evaluation 
system. Using the reports of the system, we present 
in section 4 a comparison of our method versus 
those that have been submitted to the system at the 
moment of writing.  

Unfortunately, at the time of writing there is no 
system available for the optical flow community that 
would give an independent evaluation of noise-
tolerance. This is why the evaluation of noise-
tolerance of our periodicity-based approach is 
provided by a different technique which makes use 
of the datasets provided with ground truth. 

Further references to existing methods can be 
found in the survey [2]. 

1.2 Noise-tolerance 

Not all methods for determining optical flow are 
noise-tolerant. Indeed, the derivatives in eq. (1.2) 
cannot be computed accurately under noise and 
therefore the differential methods are incapable of 
coping with a strong noise.  

Potentially, those methods that do not employ 
derivatives of the input data may be tolerant to 
noise. The method of Fleet and Jepson, [9], is 
noise-tolerant. Nevertheless, we are unaware of 
any comparative evaluation of noise-tolerance of 
different methods. Those works, including [9], that 
present experiments with noisy input do not convey 
sufficient information for benchmarking noise-
tolerance. 

Note, however, that noise-tolerance is 
important for some applications. Night vision 
systems, for instance, deal with weak signal that 
leads inevitably to a high level of Poisson noise. For 
a sufficiently weak signal, all noise-forming factors 
become negligible compared to the probabilistic 
nature of pixel values. It is well known that Poisson 
distribution represents an adequate statistical 
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model for pixel values regarded as random 
variables, whereas for the Poisson distribution, a 
linear reduction in the noise level leads to a 
quadratic growth of the signal magnitude.   

Using this standard fact, we study accuracy of 
our method for different levels of noise and prove 
that a dramatic reduction in the signal magnitude 
can be provided almost without lost of the accuracy. 
This fact creates new opportunities for application 
of optical flow, for instance, in the X-ray medical 
radiography. 

1.3 Main Idea 

The periodicity-based approach is implemented as 
a local early vision detector for determining velocity 
at random locations of the frame. A master-level 
algorithm calls the detector and passes a location 
as an argument. The detector response can be 
negative or positive; a positive response includes a 
velocity estimate and its covariance matrix. A 
degenerated covariance matrix means that the 
estimate is a component velocity.  

The following three paragraphs clarify the key 
details of this scheme. 

Velocity is related to shift-invariance. The idea 
of detector is based on the fact that BCE, eq. (1.1), 
states local shift-invariance of the input dataset 
along vector { ),,( tyxu , ),,( tyxv , 1} denoted below 
as α*. In particular, shift invariance holds in any 2D 
spatiotemporal profile Xα parallel to α*, Fig. 1. The 
portion of data that Xα cuts from an input set formed 
by four shots is depicted in Fig. 1 as bold parallel 
horizontal lines.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1. How search for velocity can be reduced to 
3FM.. 

Shift-invariance leads to periodicity. Consider a 
reduction of any input image to the corresponding 
line of the just mentioned horizontal lines. Due to 
shift-invariance, the functions defined this way 
represent several identical copies of the same 
function. Being concatenated, these copies yield a 
periodic function defined on a long line and the 
period is equal to the common length of short lines. 

A known test for periodicity can be adapted to 
estimate velocity. If α is an arbitrary vector, the 
concatenated function can be constructed formally 
in the same way as above. However, this function is 
not periodic in general.  

Our detector compares the outputs of a test for 
periodicity for different values of α and determines 
the estimate α~  as such α that corresponds to the 
'most periodic' function. We make use of an existing 
test for periodicity — the Three Frequencies 
Method (3FM) of Khachaturov, [18]−[19] — that 
yields quite accurate estimates of period and is 
noise-tolerant. An obstacle arises for direct 
application of 3FM to each profile Xα: the amount of 
information provided by a few horizontal layers (that 
represent shots) is insufficient for accurate 
estimation. Nevertheless, this drawback is 
compensated by the fact that many such profiles 
can be constructed in a small neighbourhood. 
Information from all profiles is accumulated and 
used then in the 3FM. 

The remainder of the paper proceeds as 
follows: Section 2 describes the 3FM and presents 
its adaptation to velocity computation, and also a 
RANSAC-based improvement of the approach to 
cope with the case when the final estimate must be 
chosen from several candidates; it presents also an 
estimate of the dynamic error of the method. 
Section 3 describes the noise generation. Section 4 
presents experiments. 

2 Determining Velocity by the 3FM 

2.1 Periodicity Test of the 3FM and Its 
Adaptation 

The test for periodicity of the 3FM is based on the 
following  

Theorem (Khachaturov, [18] ). Let f(x) be a real 
function of period P such that for any x∈R1 it has 
expansion in Fourier series, T be a natural number,  
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δ be a small real number,  and  ω be a functional 
defined as  

∫ +−=
TP xi

TP dxexfPTf P

0

)1(1 ,)(),,,(
2πδδω   (2.1) 

then:   
(a) the value of |),,0,(| PTfω  does not depend 

on T;  
(b) for any δ≠0, it is true that |),,,(| PTf δω →0  

as T→∞;  
(c)  ),,/1,( PTTfω = ),,/1,( PTTf −ω =0. 
 

The proof can be found in [19]. The notation used in 
this theorem corresponds to the content of Fig. 1 as 
follows:  T stands for the number of available 
frames (horizontal layers of Fig. 1); P is the length 
of time-constant segments of Xα; f represents 
concatenation of all functions defined on the time-
constant segments, so x belongs to [0, TP]. The 
equation x=(t−1)P+l, where l∈[0,P] is real and 

t∈[1,T] is natural, establishes a one-to-one 
correspondence x↔{t, l} between the points of the 
long line and the time-constant segments.  

Given Xα, this description determines 
completely computation of f(x) at any x. 

The theorem leads to the following rule: given a 
family {α} of velocity candidates, the velocity 
estimate is constructed as such α~∈{α} that the 
following (i) and (ii) hold simultaneously: 

 
(i) |)~(| 0 αω is a local maximum with respect to 

small variation of α;  
(ii) Both )~(1 αω− and  )~(1 αω  are zeros. 
 
In practice, instead of (ii), we use the following 

modification: 
(ii*) Both | )~(1 αω− | and  | )~(1 αω | are minima 

close to zero. 

 

Figure 2. Block-diagram for periodicity-based velocity estimation. 

Main steps of this estimation scheme are 
summarized in the block-diagram of Fig. 2.  

Some instances of real application of our local 
detector of velocity are presents in Fig. 3. Each 
instance is visualized as three plots related to 
processing respective components of 

),({ 1 αω− ),(0 αω )}(1 αω . The velocity candidates α 
are represented by nodes shown on the 'floor' of 
each plot. At any node α, a white post with a black 
head is depicted; its height represents a normalized 
value of a corresponding )(αωi , where any 

1,0,1−=i  represents the plot number. The three 

functions interpolated from these data are shown 
both by the surface and by intensity variation of the 
floor color. Note that for the central plot, a higher 
intensity stands for a larger value, whereas for the 
other two, for a smaller one. The three small bright 
squares depict in triplicate the velocity estimate. 
These typical examples include: an instance of the 
'good' case (the top), an instance of a badly 
conditioned Hessian (the middle), and an instance 
of several local extrema (the bottom). 

Some specific details of this technique are 
briefly commented upon in the remainder of this 
section. 

1.Input: I(x,y,t); 
a location in the 
image frame; a 
priori domain of 
allowed velocities 
Vr 

2. Construct three functions, ),({ 1 αω− ),(0 αω
rV

)}(1 αω , 

defined on Vr. 

3. Search for extrema: Find inside Vr all minima 
for )(1 αω− and )(1 αω , and all maxima for )(0 αω . 

 

  4. Select the best combination of extrema of the 
three respective functions: This operation is required if 
any of the above functions has several extrema. 

 

  

5. Fuse three 
extrema of the best 
combination into a 
single estimate 
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                            Figure 3. Visualization of three instances of real application of the detector. 

 
• Accumulation of information from a set of 

profiles (this issue was mentioned in the end of 
Section 1.3). Technically, it is implemented as a 

simple sum of square norms of corresponding 
individual functionals computed for each profile, like 
Xα in Fig. 1, of a set. In turn, the set of profiles can 
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be constructed in different ways. In our 
implementation, given a location in the frame, a 
small square domain B is constructed around it. 
Then, a set of lines parallel to a side of B is 
constructed with a fixed step between two adjacent 
lines. Each line determines a 2D-profile parallel to 
vector α*. Two sides of B with orthogonal directions 
are treated in the same way, which duplicates the 
final number of involved profiles. The size of B must 
be properly balanced: a large size increases both 
the dynamic error and computational costs and 
should be avoided at discontinuities, whereas a 
small size makes the content of patches too 
uniform.   

 • Treating colour images. The above scheme 
is applied to every colour component and the output 
functionals are constructed as their sum. 

•The case of higher dimensions. Extending our 
scheme to higher dimensions (e.g., to the temporal 
sequences of tomography images) is 
straightforward: the square B above is simply 
substituted with a cube, whereas all the rest 
remains virtually unchanged. 

•Weakening the 3FM. Employing the three 
independent conditions represented by (i)-(ii*) is  
important for accuracy of estimation and 
suppressing false detection. However, the number 
of conditions can be reduced in practice: for a 
vector to be a velocity estimate, it suffices to specify 
that any two of the three conditions would hold. 
This variant of the 3FM is important for low textured 
fragments: it leads to diminution of negative 
responses (misses) of the detector. 

•Fusing extrema of the best combination. The 
arguments of two or three extrema determined by 
(i)−(ii*) are fused by the method of least squares 
(LSM), [25], to obtain the final estimate of velocity. 
LSM deals with the weights formed by matrixes 
inverse to covariance matrices of the arguments of 
respective extrema. Any such matrix coincides up 
to a coefficient with the Hessian that can be easily 
computed at the corresponding extremum. 

•Multi-scaling and cross-scale estimates. Let 
square B above be supplied with index s, B=Bs, that 
represents the size of square. Below the term scale 
stands for s. A cross-scale estimate can be 
constructed as such one for which any of conditions 
of (i)−(ii*) holds for its own scale. Since the 
conditions (i)−(ii*) must hold theoretically for any 

scale, the cross-scale and the single-scale 
estimates have the same theoretical basis. 

 

2.2 The Case of Several Extrema 

Given a location in the image frame and a square of 
allowed velocities Vr =[–r, r]×[–r, r], where r>0, an 
attempt to apply the method of section  2.1 can lead 
to one of the following cases: (a) there is a unique 
estimate in Vr that satisfies the above conditions 
(i)−(ii*); (b) there are several candidates to 
represent the estimate.  

In experiments on standard datasets, the first 
option ('good case') holds for about 80-90% of 
locations. But difficulties arise when several 
extrema occur: any local strategy has a non-zero 
probability of a wrong choice of extremum. 
Moreover, wrong decisions have usually a high 
correlation for close nodes of a grid. While 
processing the famous Yosemite sequence by a 
straightforward version of the above method, these 
issues lead to a small number of fluctuations, say, 
for 0.25-0.5% of all nodes. But these fluctuations 
are strong and deteriorate the overall end-point 
error significantly.  

In the remainder of this section, we shell briefly 
present some ideas to improve performance of the 
method. We combine the local extrema of several 
close nodes and several scales (see the end of 
previous section). The goal is to cope better with 
the case (b).  

In the enhanced technique, first of all, the set of 
candidates is extended with respect to those 
specified by (i)−(ii*) of section 2.1. The two ways 
mentioned in the end of section 2.1 are employed 
for that: the requirement of the three independent 
conditions is weakened to two, and the cross-scale 
estimates are also included into the set of 
candidates. To clarify this heuristic, note that while 
violations of BCE occur they deteriorate the 
extrema exploited in the 3FM, but the deterioration 
is not uniform for different scales, so there is a 
chance to rescue a relevant extremum by variation 
of scale.   

The subsequent task is to choose a single 
estimate among the extended set of candidates.  

Some local measures for sorting candidates 
can be used for this task, but none of them 
excludes possibility of a wrong decision. For 
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instance, the extrema of a functional can be ranked 
by their values and then the rank can be used for 
choice. Our experiments show that a strategy 
based on the main idea of RANSAC, [8], overrides 
any local-measure strategy. In the rest of the item 
we comment this issue. 

To determine flow in the dense domain, we 
apply the detector not for all pixels, but for nodes of 
a sparse regular grid. Then these results are 
interpolated for the whole domain. The step 
between nodes of the grid is set to the smallest 
scale. To implement RANSAC-based strategy, we 
consider the 3×3-window of the grid around any 
current node, then a function S(c) is introduced as 
the number of nodes of the window that have a 
candidate close to the candidate c. The estimate is 
constructed as such c* for which S(c*) is maximal. 
This modification makes the method less local since 
all candidates of 3×3-neighborhood of the current 
node take part in construction of estimate. 

Note that 0≤S(c)≤8 for the inner nodes of a 
regular grid; if the flow is continuous, the maximum 
(i.e., 8) must be reached with a high probability. 
Hence, if max S(c)<8, the flow discontinuity is quite 
probable. In this case, we choose the estimate at 
random between the best candidates. The situation 
stays unclear for the rare case of several 
candidates with S(c)=8. Such observations lead to 
various simple schemes of choice of a single 
extremum. A study on the choice strategies based 
on S(c) lies beyond the scope of this paper. 

2.3 Dynamic Error 

Note that our detector constructs the velocity 
estimate at the centre of domain B as the mean 
velocity inside B. In this section we apply 
elementary properties of the Taylor series to find 
the deviation of the real velocity from the estimate. 
 
Proposition. Let F be a vector function, F(x)∈Rm, 
of vector argument x∈Rn that has all partial 
derivatives of the first and the second order. Let 

}~,...,~,~{)(~
21 mc FFFxF =  be value constructed by 

averaging values of F(x) in the n-dimensional cube 
of size 2r centered at xc. Then for any component 
i=1, ..., m, the main term of decomposition of the 

error −iF~  Fi(x) into Taylor series can be expressed 
as follows: 
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where all derivatives are computed at xc. Let us 
apply averaging (integration in the n-dimensional r-
cube) to the right hand side:  
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and find the first non-zero term after the integration 
of this expression: 
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The interesting detail is that the first partial 
derivatives and the mixed derivatives of the second 
order do not participate in eq.(2.2). 

This simple property can be used in the two 
ways as follows.  
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The first way is that if the second partial 
derivatives at the centre of cube in the right-hand 
side of (2.2) are known a priori, then an enhanced 
estimate can be written as  

=*~
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It compensates the main term of decomposition of 
the dynamic error in Taylor series.  

The second way consists in a simple numeric 
method for computation of the deviation, that is of 
|| −iF~  Fi(x) ||. For this goal, the derivatives in the 
right-hand side of (2.2) can be substituted with a 
simple approximations: 
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after which the right-hind side of (2.2) can be re-
written as  
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     (2.3) 

Given a dataset provided with ground truth, the 
expression (2.3) can be easily estimated. 
 

3 Noise Generation 

It is known that sensor noise in digital images is 
formed by components of different kinds (Horowitz 
and Hill, [14]). Noise-tolerance is studied here only 
with respect to Poisson noise, also known as 
photon or shot noise. Our attention is focused on 
the weak-signal images important, for example, for 
night-vision systems or computer radiography, and 
for such images the Poisson noise overrides all 
other kinds. 

Our scheme for generation of noise is 
described in the remainder of this section. 

Given b∈[0, 255] as an exact pixel value 
represented in the one-byte dynamic range, a 
variate to represent this pixel with noise is 
generated as T( 1

,
−

WM ρ (P(Mρ,W(b)))). These variates 
are statistically independent for different pixels. The 
explanation follows.  

Mρ,W and 1
,

−
WM ρ  are, respectively, a linear map  

Mρ,W: [0, 255]→ R+ and its inverse; µ=Mρ,W(b) 
represents the expectation of number of photons at 
the pixel photodetector. P represents a generator of 
variates, [15]: each call of P with parameter µ≥0 
returns variate P(µ), distributed by Poisson's law 
with expectation  µ. T clamps big values: if x≤255 
then T(x)=x, else T(x)=255. Parameter ρ stands for 
the level of noise and is defined as 
standard_deviation/signal, where the signal 
corresponds to a certain value W ('brightness of 
white') from the dynamic range: W must be as high 
as possible, but so that the need to truncate value 
of 1

,
−

WM ρ (P(Mρ,W(b))) would have a specified small 
probability, otherwise it is difficult to interpret the 
experiments with noise. For instance, if W=210, 
then for any ρ<0.3 and b<210, the probability of 
truncation is <0.015%. In turn, the image area with 
b≥210 is small usually: for example, it is <2% for 
the Yosemite. Since for the Poisson distribution the 
mean value is equal to the variance, these 
definitions lead easily to equation 

 Mρ,W (W)=1/ρ2,   (3.1)  
which together with condition Mρ,W(0)=0 completely 
determines the maps Mρ,W and 1

,
−

WM ρ .  

4 Experimental Results 

Note that if a flow discontinuity line divides square B 
of Sect 2.1 into two halves, it is quite probable that 
the set of candidates generated by the 3FM 
includes velocities of either half. In this case, 
selection of a correct candidate cannot be done 
locally. A similar situation arises while applying our 
detector to datasets with layered flow or other 
violations of BCE. Processing such hard datasets 
requires some non-local techniques beyond the 
scope of this paper: our primary goal is to 
understand if our detector has merits for further 
study and, if yes, to combine it in future with the 
non-local techniques.  

The majority of datasets in the Middlebury open 
evaluation system [3] are hard, except for the 
Yosemite one. According to the system 
specifications, we treated all evaluation datasets 
and submitted them to evaluation. Nevertheless, 
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only the experiment with Yosemite is relevant to the 
stated goal. 

The second goal is to study noise-tolerance of 
the method. For this we make use of training 
datasets provided with ground truth, namely some 
Middlebury training datasets and the Yosemite 
dataset by Michael Black [5]. Note that the 
Yosemite version of the evaluation system is 
slightly different and without publicly available 
ground truth. 

We adopt main measures and statistics 
proposed by different authors, [4], [23], [28], and 
summarized in [2]. Here we employ: Endpoint Error 
(EE) and the robust accuracy measures EE50, 
EE75, and EE95 applied to EE. The EE is defined 
as: 

EE = 22 )()( GTGT vvuu −+− , 
where (u, v) and (uGT,vGT ) are the flow estimate and 
the ground truth, respectively. 

Then EE50, EE75, and EE95 represent robust 
accuracy measures applied to EE. The robust 
accuracy measures are defined as  follows: let AX 
denote the accuracy of the error measure at the Xth 
percentile, after sorting the errors from low to high. 
So, for the flow errors EE, we compute A50, A75, 
and A95. They are denoted in our tables, 
respectively, as  EE50, EE75, and EE95. 

The number of scales (Sect. 2) is set to three in 
experiments. The lowest scale varies from 4 to 5 
pixels for different datasets, and the highest scale – 
from 17 to 21. The step between two adjacent 
profiles for computation of functionals for the 3FM 
(Sect. 2.1) is set to two pixels. The flow 
computation is performed first by our local detector 
on the nodes of a regular grid and then interpolated 
to the rest of pixels. The step between nodes of the 
grid varies from 5 to 7 pixels depending on the size 
of frames of a dataset. 

Table 1 shows distribution of the methods with 
respect to EE, as submitted to the evaluation 
system, [3]. It takes into account the results 
obtained on the Yosemite datasets. Our method 
with EE=0.12 belongs to the best 20 methods of 87 
submitted to the Middlebury system for evaluation. 
We believe that EE = 0.15÷0.2 for Yosemite 
corresponds to a reasonably high accuracy quite 
sufficient for most applications. 

Table 2 summarizes our experiments for the 
noise-tolerance study. Our results of the first line 

coincide with the corresponding data evaluated at 
[3].  

Here we see how robust our method is under 
increasing noise. A change from zero noise to 1%-
noise has little statistical effect. Further increase 
from 1% up to 10% deteriorates the parameters 
insignificantly for practical purposes. Note however 
that according to eq. (3.1), a 10-fold increase of 
noise leads to a 100-fold diminution of signal (Table 
3). 

Table 1. Performance of our method (EE=0.12) vs. 
others for the Yosemite dataset 

End-point Error (EE) Number of methods 
with   a better 
performance 

0.07 1 

0.10 4 

0.11 11 

0.12 20 

0.13 29 

0.14 37 

0.20 68 

0.59 89 
 
At ρ=0.2, noise influences the parameters 

notably stronger, although they remain at a 
reasonable level for Yosemite and  Rubber_Whale, 
but not for Hydrangea (which is much harder). For 
this last dataset, one more experiment is presented 
for ρ=0.15 to localize better the limit of applicability 
of the method. For experiments with noise, the 
computed flow is shown in Fig.4. For representation 
of computed flow there, we adopt the colour-coding 
format. The coded images are constructed using 
the Middlebury open software [27].  

We applied expression (2.3) to compute the 
mean dynamic error (DE) of the detector. Our 
results show that DE is negligible compared to EE. 
For example, for Yosemite DE=0.014 vs. EE=0.12.   

The processing time for the described algorithm 
is about 1-2 sec/node on a conventional computer. 
This assumes independent treating of each node. 
For this case the full treatment of Yosemite takes  
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Table 2. Dependence of main measures on the level of 
noise 

Dataset Noise  
(ρ) 

EE EE95 EE75 EE50 

Yosemite  
(by Black, 
[5]) 

0 0.12 0.27 0.12 0.08 

0.01 0.12 0.27 0.12 0.08 

0.1 0.16 0.35 0.15 0.08 

0.2 0.3 0.6 0.2 0.09 

Rubber 
Whale 

0 0.72 0.54 0.18 0.08 

0.01 0.72 0.54 0.18 0.08 

0.1 0.82 0.78 0.21 0.11 

0.2 1.14 1.34 0.27 0.14 

Hydrangea  0 1.4 1.55 0.55 0.06 

0.01 1.4 1.55 0.55 0.06 

0.1 1.72 1.62 0.6 0.09 

0.15 4.24 1.75 0.77 0.15 

0.2 6.7 2.6 1.08 0.4 
  

Table 3. How signal depends on the noise level 

Noise  (ρ) Signal: the number of 
photons at a 
bright_pixel   

3*10-5 (no noise) 1.17*1010 

0.01 1.05*105 

0.1 1050 

0.2 267 
 
about 2000 sec. It is slow because of the brute-
force search for any scale and node. Nevertheless, 
the computation becomes 20-40 times faster – that 
is, about 70 sec for Yosemite – for a modified 
algorithm that takes advantage of initial guess for 
velocity estimates. This modification is simple for 
the areas with continuous flow, but it makes slightly 
more complex the detector logic at the flow 
discontinuities. Anyway, we believe that the 
processing time is not a critical factor because the 
kernel computations of our method fit ideally the 

parallel computing, which leads to the opportunity of 
a very fast and reasonably chip implementation by 
the GPGPU, [24]. 

5 Conclusion 

A novel periodicity-based approach to computation 
of optical flow is presented.  

The core algorithm is implemented as a local 
detector designed for independent applications at 
random locations of the image frame. The detector 
employs specific properties of the test for periodicity 
of Khachaturov [18]−[19].  

Here we study the detector in its genuine form, 
that is without using the prior term. Even so, the 
evaluation by the Middlebury system, [3], 
demonstrates a reasonably high accuracy of the 
detector for continuous flow; on the other hand, the 
detector is not competitive on hard datasets, which 
agrees with the arguments at the beginning of Sect. 
4.We believe that in future the performance can be 
improved furthermore by the prior term and 
combining our detector with some of the 
approaches mentioned in Sect. 1. However, the 
results presented in Sect. 4 allow us to claim that 
the chase for improving accuracy is not as 
important for applications as noise-tolerance of the 
method. For example, the approach can be applied 
to medical applications and more specifically to the 
preventive tomography.  

To clarify this assertion, note that the high 
quality of images produced by the modern 
tomography equipment is aimed to allow a 
diagnostician to interpret a single tomographic 
image by a direct visual inspection. In contrast to 
that, the preventive tomography suggests 
processing several tomographic images of a 
patient. All images should be taken under the same 
conditions with a certain period, say, one per year. 
The proper analysis of the images is completely 
automatic and it does not require any medical 
interpretation of individual images because the goal 
is to estimate their dynamics and more specifically 
to detect an illness at its early stage by suspicious 
changes in human body. 

In this respect, the results presented in Sect. 4 
show that automatic study of dynamics can be 
provided practically without any loss of performance 
by the images of a much lower quality than that 
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required for a static visual inspection. A direct 
consequence of our results for the preventive 
tomography consists in the fact that, while taking 
the images of a patient, the exposure can be 
hundreds times less than for conventional 
tomography. That is, harmful radiation exposure for 
the preventive tomography becomes practically 
negligible and, in addition, generation of images is 
hundreds times faster than for the conventional 
tomography – some seconds instead of dozens of 
minutes. 

The presented results clearly determine the 
main priorities for future work: we believe that it 
must be focused on real applications that use weak-
signal images as the input, in particular, on the 
night-vision systems and the preventive 
tomography. For the latter case, our processing 
scheme should be extended from 2D- to 3D-images 
and verified on the temporal sequences of real 
tomographic images; an important part of research 
consists in medical interpretation of computed flow. 
It must be provided in collaboration with the                                                                                                                                                                                                                  
experts in medicine. 

 
 

                                                        

     

     
 
Figure 4. Influence of noise on the computed flow. Top, middle, and bottom row represents, respectively: Yosemite, 

RubberWhale, and Hydrangea; the images in the left column are frames of a corresponding dataset; then from the left 
to right: the flow computed without noise, for ρ=0.1, and ρ=0.2.           
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