
 
Abbreviated title: An Approach to Trip- and Route-Planning

Some practical planning problems can be interpreted as set-to-set shortest path problem (spp), i.e. as search of a

shortest path between two sets of nodes, A and B, of a graph G. A straightforward reduction of such a problem to

the search of solutions for point-to-point spps is impractical because the computational complexity is too high for

a huge G. This paper presents a new approach to set-to-set spp for the case of not arbitrary A and B, but those

which are represented by some nodes of an additional graph T. The graph T simulates a "geographic system" on

G. Under some assumptions natural for many applications, this approach leads to a competitive algorithm for

this kind of set-to-set spp. As prospective areas for this technique, two applications are discussed -- the problem

of route planning for a visually guided robot in a static environment, and the problem of planning a fastest trip

by means of all available timetables of all kinds of transport.

INTRODUCTION

Motivation
Numerous papers (see [Sharir, 1997] for a survey) treat the robot motion planning as the following

problem of Cartesian navigation: Given goal and initial states of a robot as some points in an Euclidean

space, find a path avoiding obstacles between these points.
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    This interpretation of navigation attracts researchers because it avoids use of complicated models of

environment. Instead, the algorithms of path finding modify a current path reacting to a new obstacle. At

the beginning of search, the robot may have zero-knowledge about its environment.

    On the other hand, it is clear that for most of natural navigational problems the above Cartesian

interpretation is inadequate. For example, the task “go to the dining room” does not assume use of any

Cartesian system. In addition, if robot has already studied its environment, it is not natural to involve any

exploration in planning this task.

    What mathematical representation of robot environment fits better for posing and solving

navigational problems, if this environment is already perfectly studied?

     The following graph-based approach represents an attempt to respond to this question.

       Let a model of robot environment be represented by directed graph G = (VG, EG), for which the nodes

of VG and the edges of EG have the following interpretation.

        Let S denote the space of all robot poses inside an environment. It is assumed that robot views are

put in one-to-one correspondence with points of S. Each node introduces a rule declaring some close views

as equivalent. So each node of VG codes a domain of S and, consequently, the set of nodes VG represents a

sampling of S by equivalent robot views.

An edge l∈ EG, where l=(a,b) and a, b∈ VG, represents a rule for moving the robot from any state

coded by a to a state coded by b. So execution of this rule changes any robot view associated with a to a

view associated with b.

If weights |l|≥0 are assigned to all l∈ EG, then a simple interpretation of a navigational problem is

presented by the well-known point-to-point shortest path problem (spp) in G: Given a∈ VG to b∈ VG, find a

path from a to b with minimal summary weight.

         This approach [Khachaturov, 1999A] is close to the one of  [Shölkopf and Mallot, 1995], which

will be discussed in the last section.



         However, this approach is not adequate yet to the navigational problems posed in natural terms. The

above task “go to the dining room” does not specify any particular view to reach. It requires achieving

any of a huge number of views. In terms of graph G, a more adequate problem is: Find a path from a

node to a set of nodes.

          Interpreting a natural navigational problem with such a point-to-set problem on graph, we can see

that the goal set (dining room) is not an arbitrary set of nodes of G. Those goal sets form a specific

system of subsets of VG. This system does not participate in resolution of navigational problems by the

methods known so far.

           So, what mathematical model represents adequately the goal sets and how can it be used for

search?

           Furthermore, there exists a straightforward method to find a path for this point-to-set graph

problem: For all nodes of the goal set, execute cyclically an algorithm that finds a solution for point-to-

point spp. However the complexity of this method is too high.

       Indeed, denoting by |VG| the size of VG, the complexity of search for point-to-point spp by the

Dijkstra's scheme [Dijkstra, 1959] is bounded [Leeuwen, 1990] by a function linear in |VG|2, or in

|EG|+|VG|log|VG| if special data organization is used [Fredman and Tarjan, 1987]. To obtain the estimates

of complexity for the straightforward method, these values should be multiplied by the number of nodes of

the goal set. Hence, the straightforward method is unrealistic for a huge number of views in real scenes.

       How can the complexity be reduced?

Description of Results

The approach presented in this paper gives certain responses to the above questions. It extends and refines

the results of (Khachaturov, 1999B).

      The same interpretation of graph G as above is used.



      In addition to G, another directed graph T is introduced into the model which we intend to use for

representation of a typical navigational problem. T simulates a kind of geographic or/and administrative

organization of G.

      By definition, T has a unique source node (i.e. the node with no in-coming edges), whereas the set of

terminal nodes (nodes with no out-coming edges) coincides with VG.

     Each node α of T determines in a natural way a set Vα⊂ VG. Informally, Vα represents a geographic

object in G the name of which is α. Any edge of T stands for the relation of usual inclusion of

geographical objects. That is, if l is an edge of T, and α and β  are, respectively,  the start- and end-nodes

of l, then the geographic object labeled by α is wider than the one labeled by β.

       Given pair {G,T}, a navigational task is represented mathematically as the following problem: Let α

and β be nodes of graph T, and let Vα and Vβ be the corresponding subsets in VG. Find a single shortest

path that begins inside Vα and ends inside Vβ.

      This is as an extension of spp on graph G. Under some assumptions quite natural for many

applications, an efficient algorithm is developed that finds a solution for this extended spp.

      Then this approach is modified to the problem of planning a fastest trip.

      Note that actually many airline companies give customers the opportunity to plan interactively the

flights for a trip from one airport to another. It works as an on-line Internet application. This is a typical

example of the “planning-a-trip” problem. However, such a system does not cover all needs of a customer

living in a small village who plans to go to another small village abroad. At the time of writing, there is no

system yet able to process such a highly specified query taking into account the timetables of all available

kinds of transport including local buses, for instance. The presented approach can be useful for this

purpose.

     For both prospective applications, the presented approach means that naturally posed navigational

problems can be resolved efficiently provided that corresponding environment is represented adequately by



a pair {G,T}. Hence, future research and developments should be focused on construction of the

components of this pair. The paper is concluded with a discussion on this point.

GT-MODEL: DEFINITION AND INTERPRETATION

This and the following section represents a navigational problem in terms of a new model (called below

GT-model) composed by two graphs.

Definition 1. In formal terms, a GT-model is defined as pair {G, T}, where the components satisfy the

following properties:

•  G=(VG, EG) is directed graph with non-negative weights assigned to its edges

•  T=(VT, ET) is directed graph which satisfy the following condition:

T has a unique source-node whereas the set of its terminal nodes coincides with VG.

An interpretation of this formal definition follows under assumption that a GT-model represents states of a

visually guided robot in its environment. Physically, this environment is assumed to be static.

     The interpretation of graph G for this example was already given in the Introduction.

     Graph T represents a system of some sets composed by nodes of G. This system is determined by the

following rule: Any node α of VT corresponds to set Vα⊂ VG defined as the set of all terminal nodes of all

paths in T that start from α.

   Definition 2. This set Vα will be called the geographical domain represented by α, or, for brevity

"domain of α".



As any terminal node of T corresponds to a node of VG, then due to the interpretation of the Introduction, it

represents some close states of a robot inside its environment. Unlike that, for a non-terminal α∈ VT, its

domain Vα can contain far robot states. Graph T organizes such domains into a system quite similar to a

geographical system. In particular, the domain of the source-node of VT is represented by the whole VG.

     If there is a path in T from α to β, then the domain of α obviously contains the domain of β. I.e., the

geographic object Vα in G represented by α is wider than Vβ represented by β.

     The simplest kind of T is tree. If T is a tree, it represents so-called tree decomposition of G [Leeuwen,

1990].

ROUTING PROBLEM IN TERMS OF GT-MODEL

For given GT-model, let α,β∈ VT and Vα, Vβ ⊂ VG be domains of α and β , respectively.

      In this notation, the problem under consideration is: Find a path in G with minimal summary weight

that begins inside Vα and ends inside Vβ.

Definition 3. This problem is denoted by {Vα, Vβ} and called the extended shortest path problem (espp).

The espp is a set-to-set extension of point-to-point spp in G. If α,β are some terminal nodes of T, i.e., if

α,β∈ VG, then espp {Vα, Vβ} coincides with a point-to-point spp. In general case, espp implies search of a

single path between two sets of nodes of G.

      Note that espp seems to be quite adequate mathematical representation of many problems of natural

navigation, in particular, of the problems of non-Cartesian navigation, like “go to the dining room”.

      The rest of this section deals with espp.



A Database Representation of GT-Model

Let us assume that the memory units (sets) of a network database are put in one-to-one correspondence

with the nodes of T. Based on the correspondence, it is possible to deduce a rule that determines which

memory unit should store the record about an edge of G.

Definition 4. It is said that β∈ VT is an owner of α∈ VT if an edge exists in ET with β as the begin and α as

the end. In the same case, α is called a child of β.

Definition 5. The set B⊂ VT×VT is defined as the set of all ordered pairs (µ,ν)∈ VT×VT, such that µ and ν

have a common owner. (I.e., B represents the set of brother pairs of T).

Definition 6. For γ∈ VT, the graph Tγ is defined as a sub-graph of T determined by two properties: (i) γ is

the unique source-node of Tγ; (ii) Tγ contains all those paths of T that start at γ.

For any α,β∈ VT, α≠β, it is possible to find a unique γ∈ VT satisfying the following properties:

•  Any path, from the source node of graph T to α, or to β contains γ. [In particular it means that Tγ

contains α and β.]

•  If the first property holds for some λ∈ VT , λ≠γ, then Tγ ⊂  Tλ.

Definition 7. Given γ∈ VT that satisfies these properties, the corresponding graph Tγ is called the minimal

sub-graph of T built by nodes α,β.

a
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The source-node γ of minimal graph Tγ built by nodes α and β has (otherwise Tγ would not be minimal) a

pair of non-equal children, say µ and ν, such that some two paths in Tγ exist from µ and ν, respectively, to

α and β.

Definition 8. Such nodes µ and ν are called the brother nodes built by α and β. (It is clear that

(µ,ν)∈ B).

If Tγ is a tree, there exists just one pair of brother nodes built by α and β. In general case, there can exist

more than one pair of brother nodes built by α and β.

Definition 9. Let (µ,ν)∈ B and Vµ, Vν be domains of µ and ν, respectively.  By M(µ,ν), we denote the set

of all edges l∈ EG that begin inside Vµ and end inside Vν.

I.e., for an edge l∈ EG represented as l=(αs,αe), where αs,αe∈ VG, the relation l∈ M(µ,ν) holds if and only

if µ,ν are the brother nodes built by αs,αe.

      An algorithm below assumes that the nodes of T are put in correspondence with the units of memory

of a network database for storing the edges of EG. By means of just the introduced terms, we are able to

determine the storing rule:

Given l=(α, β), where α,β∈ VG, let Tγ be the minimal sub-graph of T built by nodes α,β. The node γ

represents the very memory unit where the record about l∈ EG must be stored.

Hence, the set of all edges of EG attached in the database to the node γ∈ VT has the form

∪ µ,νM(µ,ν), where µ and ν span all children pairs of γ.

We can informally comment this rule in the following way.



Let us imagine that to any node of T, which represents a geographical object in G, a virtual transport

department is assigned. It must administrate some routes represented by edges of G. In these terms, each

department keeps under its own control only the routes connecting the domains of its immediate

subalterns.

I.e., for the department corresponding to a node γ, if a route passes strictly inside the domain of a

child-node of γ, this route is out of this department jurisdiction. As well, if a route begins inside Vγ (i.e.

inside the domain of γ), but ends outside Vγ, then a higher level department must administrate this route.

The only case of keeping a route under the control of this department is if the route begins inside the

domain of a child-node of γ and ends inside the domain of another of its child-nodes.

    Note that for a non-tree T, the ends α,β of an edge of G can generate different pairs of brother nodes

µ,ν∈ VT, but there is only one memory unit where this edge can be stored.

Analysis of espp

For α,β∈ VT, consider espp {Vα,Vβ}. If Vα⊃ Vβ or Vα⊂ Vβ, then {Vα, Vβ} has a trivial solution.

Otherwise, denoting by |{Vα, Vβ}| the length |l1|+|l2|+...+|lk| of a solution (l1, l2, ..., lk) for {Vα, Vβ},

the following equation obviously holds

|{Vα, Vβ}| = min
VV νµ γδ ∈∈ ,

(|{Vα, δ}|+|{δ, γ}|+|{γ, Vβ}|),         (1)

where while minimizing the right-hand side,  µ,ν∈ VT scan all pairs of brother nodes built by α, β, and for

each pair of them, all δ∈  Vµ, γ∈  Vν should be revised.

      So by means of Eq. (1), the original espp {Vα, Vβ} spawns three new espps: {Vα, δ}, {δ, γ}, and {γ,

Vβ} with variable µ, ν and δ, γ.

      Let Tλ and Tλ ' be the minimal sub-graphs of T built, respectively, by nodes α,β∈ VT and α',β'∈ VT.



Definition 10. If graph Tλ ' contains as its proper part graph Tλ, it is said that espp {Vα, Vβ} is simpler

than espp {Vα′ , Vβ′}.

Proposition 11. The espps corresponding to the first and the third summands of the right-hand side of

Eq. (1) are simpler than the espp participating in the left-hand side.

This simple observation determines a strategy of involving some heuristics to solve espp for practically

important cases.

     Namely, due to this proposition, it is possible to develop an algorithm, which, while solving an espp,

generates recursively two simpler espps for the first and the third summands of Eq. (1). The point is how

to simplify the second espp of the right-hand side of Eq. (1), and how to simplify the traversal of all µ, ν

and δ, γ.

Simplifying  the Middle Term of Equation  (1)

The following heuristic represents a principal step to simplify espp {δ, γ} of Eq. (1).

Assumption 1. If for espp {δ, γ} of Eq. (1), a solution exists, then there exists a solution of {δ, γ}

represented by a path that belongs to the minimal sub-graph of T built by nodes µ and ν. [Note that this

minimal sub-graph coincides with the minimal sub-graph built by α and β.]

Informally, this assumption means that to build a best route between some towns of a state, there is no

need to cross a border of another state.



Definition 12. For µ∈ VT, a node α ∈ Vµ is said to be the exit customs of Vµ when α is the start-node of an

edge of G, the end-node of which belongs to the domain Vν of a brother node ν of µ. (I.e. if there exist

ν∈ VT and l∈ EG, where l =(α, β), such that (µ,ν)∈ B and β∈ Vν).

Definition 13. For ν∈ VT, a node β∈ Vν is said to be the entrance customs of Vν when β is the end-node of

an edge of G, the start-node of which belongs to the domain Vµ of a brother node µ of ν. (I.e. if there exist

µ∈ VT and l∈ EG, where l =(α, β), such that (µ,ν)∈ B and α∈ Vµ).

Proposition 14. If µ, ν scan all brother nodes built by α, β∈ VT and δs and δe scan not all elements of Vµ

and Vν, but only their exit- and entrance-customs, respectively, then, under assumption 1, the following

equation

|{Vα,Vβ}|= min
VV es νµ δδ ∈∈ ,

(|{Vα,δs}|+|{δs,δe}| +|{δe, Vβ}|)   (2)

yields the same solutions of espp {Vα, Vβ} as Eq. (1).

Proof. Note that the set of solutions of Eq. (1) contains all solutions of Eq. (2). Hence, it is sufficient to

prove that each solution of Eq. (1) can be found by Eq. (2).

     Let us consider a path lδγ that represents a solution for espp {δ, γ} of Eq. (1). In general case, lδγ can

leave Vµ for the first time via a node which does not represent any customs, and then be continue with a

node which does not belong to the minimal graph of T built by α and β.

     However, this is impossible if assumption 1 holds. In this case, lδγ can always be subdivided into three

following parts:



     The first part is the maximal part of lδγ that begins with δ and ends with some node δs defined as the

last node of lδγ before it leaves Vµ for the first time. So δs is an exit customs of Vµ. Due to assumption 1,

the next after δs node of lδγ belongs to the domain of some brother node of µ.

     The third part (tail) is the maximal part of lδγ that ends in γ and contains only nodes of Vν. It begins at

some entrance customs δe of Vν, via which lδγ enters into Vν from a domain of a brother node of ν.

     All the rest of lδγ represents the middle (second) part of this subdivision. Its nodes belong to the

domains of some brother nodes of µ and ν.

    Then, a solution lαβ of espp {Vα, Vβ} found by Eq. (1) can be represented as lαβ = lαδ∪ lδγ∪ lγβ , where

each term in the right represents an optimal solution of the corresponding term of Eq. (1).

     It is possible to re-distribute the nodes between lαδ, lδγ, and lγβ keeping unchangeable their union. In this

new representation  lαβ = l1∪ l2∪ l3. The path l1 is defined as the union of lαδ with the just defined first part

of lδγ. The path l2 coincides with the just defined middle part of lδγ. Lastly, l3 represents the union of the

third part of lδγ with lγβ.

     By construction, the last node of l1 is represented by the exit customs δs, and the first node l3 is

represented by the entrance customs δe.

     As the whole path lαβ is not changed after this re-distribution, it still represents a solution of the

original espp. On the other hand, this new representation of lαβ belongs to the set of paths generated by

Eq. (2). QED.

This observation justifies involving new heuristics to simplify furthermore search for espp.

Assumption 2. Let µ,ν∈ VT have a common owner and Vµ, Vν be the domains of µ and ν, respectively. If a

path from Vµ to Vν exists, which starts at an exit customs δs∈ Vµ and ends in an entrance customs δe∈ Vν,



then there exists an edge l∈ M(µ,ν), l =(δs, δe), the length of which is not greater than the length of the

path.

In other words, the existence of a path between some customs of Vµ and Vν implies the existence of a

single-edge optimal path between them.

      Note that due to Assumptions 1-2, if µ≠ν∈ VT are brother nodes built by α,β∈ VG, a shortest path

exists that begins inside Vα and ends inside Vβ, having the form (a,…,x, y,...,b), where a,…,x ∈  Vµ  and

y,...,b∈ Vν. The nodes µ and ν are brother nodes built by α and β, and  x, y are some exit- and entrance-

customs of Vµ and Vν, respectively.

    To justify Assumption 2, let us note the following.

    Each espp {δs,δe} of Eq. (2) represents a point-to-point spp.

    Practically, assumption 2 means that all these spps corresponding to the second summand of Eq. (2)

were solved beforehand and their solutions were represented by some edges of G (perhaps, extending it, if

necessary).

    In many practical cases, it is possible to bound the number of either kind of customs for all nodes of

graph T by a common constant C. Then, it is sufficient to solve not greater than C2 spps to find shortest

paths that connect the customs for any pair (µ,ν) of brother nodes in graph T.

     Here this assumption is introduced to make clearer an algorithm that resolves espp. In fact, this

algorithm can be simply modified for the case without this assumption. However, such a modification

leads to a greater algorithmic complexity.

     So assumption 2 is not essential. In practice, keeping assumption 2 true is the point of a specific

permanent maintenance of the database representing GT-model.

     Note that assumption 2 is justified only if assumption 1 holds.

     The following is a weaker heuristic than the assumption 2.



Assumption 3. Let µ,ν∈ VT have a common owner and µ,ν∉ VG. Let Vµ, Vν be the domains of µ and ν,

respectively. If a path from Vµ to Vν exists, which starts at an exit customs δs∈ Vµ and ends in an entrance

customs δe∈ Vν, then there exits an edge l∈ M(µ,ν), where l =(δs, δe), the length of which is not greater

than the length of the path.

      So assumption 3 means the same as assumption 2 for all cases except the one when at least one of µ

and ν represents a terminal node of T.

     Remark 1.  The purpose of introducing assumption 3 is to separate the navigation inside a lowest level

map from the global navigation. It allows a concrete application to involve its own specific for local

navigation.

     The following are different examples in support of this view:

1. In a city organized as a system of orthogonal streets and avenues, it is quite clear geometrically how

to reach the corner of 5th Street and 13th Avenue departing from the corner of 13th Street and 45th

Avenue;

2. For a visually guided robot, it is quite natural to assign its local navigational tasks just in terms of

what the robot is seeing right now. In this case, such a task represents not a graph problem, but a

typical problem of Visual Servoing. (It will be discussed further on in the last section).

3. If a GT-model represents environment for a blind person, it is natural to use the graph-based

interpretation for all level of navigation, both for the “global” tasks as well as for the “local” ones.

      Assumptions 1-3 introduce a priori knowledge about paths in G. Another interpretation of

Assumptions 1-3 is that they are mandatory ways restricting the freedom of search, even if a shorter path

exits. Anyhow, they are intended to reduce search of shortest paths.



RESOLUTION OF ROUTING PROBLEM UNDER ASSUMPTIONS 1-3

Since under Assumption 2, l is a solution for the espp {δs, δe} of Eq. (2), the equation can be re-written in

the same notation as

|{Vα, Vβ}| = min
l ),( νµM∈

(|{Vα, δs}| +|l| +|{δe, Vβ}|),            (3)

where while minimizing the right-hand side,  µ,ν∈ VT scan all pairs of brother nodes built by α, β.

       This reminds the Bellman’s equation. Unlike the Bellman’s equation, which by a problem of its left-

hand side spawns a new problem on the right-hand side, Eq. (3) spawns two new problems.

       This leads to the recursive procedure of Fig. 1 that builds a solution for espp. This procedure

converges due to proposition 11. Fig. 2 gives an illustration to the procedure.

      Two crucial instructions of the pseudocode of Fig. 1 require special comments.

      Namely, we must explain how the instruction

“if (Vα⊃ Vβ or Vα⊂ Vβ)”

can be reduced to known graph problems, and how to construct the pairs µ,ν∈  VT of all brother nodes

built by given α,β.

Remark 2. Note that both questions are quite simple if it is known in advance that the graph T is a tree.

Indeed, in such a case, it is sufficient to track backward two paths that connect the source-node of T with

α and β, respectively. If one of the paths contains the other one, then {Vα⊃ Vβ or Vα⊂ Vβ} is true.

Otherwise, the first two non-equal nodes in these paths (counting from the source-node) yield the only

possible pair of brother nodes built by α and β. However, as it is explained in the last section, the general

(non-tree) case of T  is important for practice.



In the above terms, “Vα⊃ Vβ” is equivalent to “β is a node of graph Tα determined by α as in definition 6”.

So “Vα⊃ Vβ” holds if and only if a path from α to β exists.

      Let Sα denote the set of nodes of T that belong to the paths ending in α.

      Using this concept, the instruction "if  (Vα⊃ Vβ or Vα⊂ Vβ)" can be substituted by the equivalent

instruction "if  (β∈ Sα or α∈ Sβ)”. The last instruction is simpler because it implies solutions of a well-

known graph problem.

_________________________________________________________________
procedure solve_espp(α, β, path, weight)

begin

if (Vα⊃ Vβ or Vα⊂ Vβ)                //**    This instruction is commented in the main text

                                                          //    Here and below “**” means that the instruction

                                                          //    curries out an interaction with the database that stores GT-model

then     begin path=∅ ; weight=0; return; end

else begin weight=∞;    

             for   all µ,ν∈  VT to be the brother nodes built by α,β do          //** This instruction is commented in the main text

                  begin

        if | M(µ,ν)|≠0 then begin                                                                               //**

                                                      for each l∈ M(µ,ν), where l=(δs δe) do                             //**

                    begin solve_espp(α, δs, path1, weight1); solve_espp(δe, β , path2, weight2);

                              m= weight1+| l |+ weight2; if m<weight then begin weight=m; path=path1∪  l ∪  path2; end

       end

                                  end

                   end;

             return;

           end

end

Figure 1. A procedure that finds a solution for espp under Assumption 2. The
pseudocode uses general notation of the paper. Input of the procedure is formed by α,β∈  VT. The output contains
a shortest path path and its length weight. If weight=∞, path is indefinite. The trivial solution is given by path=∅
and weight=0.

Indeed, the problem of construction of Sα can be considered as a partial case of well-known minimum

spanning tree problem (see a review in [Leeuwen, 1990]). In our case, Sα can be constructed by

backtracking the paths that end in α.



     Note that for most of practical cases, nodes of T can have many children but only a few owners. So the

complexity of construction of Sα is expected to be quite low in practice. For example, if T is a tree, Sα

contains just nodes of a single path.

     The construction of all brother nodes µ,ν can be reduced as well to the same kind of graph problems.

     Indeed, in accordance with the database representation of GT-model, the information about all brother

nodes µ,ν that can be built by α,β, is attached to the source-node γ of minimal sub-graph Tγ built by α and

β. So  for our purpose, it is sufficient to find γ by α,β.

     It is clear that γ∈  Sα ∩ Sβ. On the other hand, it is true Sγ ⊂  Sα ∩ Sβ. In addition, γ generates the

greatest possible Sγ in the following meaning: If for some λ∈  Sα ∩ Sβ, it is true that Sλ ⊂  Sα ∩ Sβ, then Sλ

⊂  Sγ.

µ ν

           α       β
δe

δs          l

Figure 2. General step of the algorithm of Fig.1: Find brother nodes µ,ν of α, β and
chose l ∈ M(µ,ν), where l=(δs δe). (The paths of broken dotted lines must be found by recursive application of the
general step for two new espps.)

     This observation suggests a clear scheme of search of γ:

•  Construct Sα ∩ Sβ

•  For each node λ∈  Sα ∩ Sβ, construct Sλ

•  If Sλ ⊄  Sα ∩ Sβ then reject λ

•  Amongst all the candidates remaining after the rejection, select γ as the node that generates the

greatest possible Sγ.

Vµ
Vν

Vα Vβ



For example, if T is a tree, then Sα ∩ Sβ just means the common part of the only two possible paths from

the source-node to α and β, respectively, whereas λ is the lowest node in this common part.

      For the case of Assumption 3, a simple modification of the procedure of Fig.1 can follow it up to

detection of some µ or ν that belong to VG. Then this modified procedure must call a specific procedure

that resolves lowest-level navigational problem (see remark 1), for example, as a classic spp in a sub-

graph G′ of G determined by the terminal branch of T spawned by the owner of µ or ν∈ VG. (The details

are omitted.).

RESOLUTION OF PLANNING-A-TRIP  PROBLEM

For routing problem, the robot can start moving along any road any time.  Unlike that, the planning-a-trip

problem is not a stationary problem: after arriving at a node, the next segment of the trip depends on the

timetables.

     However, a new interpretation of the components of GT-model makes the above approach as well valid

for the planning-a-trip problem.

     In this new interpretation, graph T means the same as before. The nodes of graph G, although they do

not refer to any view now, have a very close interpretation to the old one: each node of new G stands for

an atomic state of the traveler in the world. Unlike that, the difference between the new and the old

interpretations of edges of G is essential.

     Any edge l∈ EG, where l =(a, b) and a, b∈ VG, means now a joint timetable of all available kinds of

transport that connect a with b.

     This timetable can be represented as function l(t,tr) of two arguments, where t and tr means,

respectively, the time of arrival in a and the identifier of a transportation line  (flight, bus, ship, etc.) that

connects a with b. Given t and tr, the value l(t,tr) represents the time of arrival in b.



      The trip from node a to node b is defined as a sequence

{l0,tr0},{l1,tr1},..., {ln,trn},

where l0,l1,,..., ln  is a path in graph G from a to b, and each trk, k=0, 1,..., n, represents identifier of a

transportation line that connects the start-node of lk with its end-node.

    The schedule of a trip depends on the initial time t0. Recursively, the time of arrival in each next node is

given by tk=lk-1(tk-1, trk-1), k=1,...,n.

     Then, any segment of a trip can be optimized by choosing the fastest way to achieve the end-node of

the corresponding edge. For this purpose, |lk(t)| will denote 
tr

min [lk(t,tr)-t], where t is the time of arrival in

the start node of lk. In other words, the function |lk(t)| yields the minimal duration of k-th link of a trip.

___________________________________________________________________________________
procedure solve_ptp(t, α, β, trip, duration)

begin

   if (Vα⊃ Vβ or Vα⊂ Vβ)

   then   begin trip=∅ ; duration=0; return; end

    else   begin     duration=∞;

                  for   all µ,ν∈  VT to be the brother nodes built by α,β do

                        begin

               if  |M(µ,ν)|≠0 then begin

                                          for each l∈ M(µ,ν), where l=(δs δe) do                                

                           begin solve_ptp(t, α, δs, trip1, duration1); t1= t + duration1;

   trans=  arg
tr

min |l(t1,tr)-t1|;   t2= l (t1, trans);  solve_ptp(t2, δe, β , trip2, duration2); m= duration1+| l(t1)|+ duration2;

                                               if m<duration then begin duration=m; trip=trip1∪ { l , trans} ∪  trip2; end

            end

                                end

         end;

                    return;

              end

end

Figure 3. A procedure that finds a solution for planning-a-trip problem
under Assumption 2. The procedure input is formed by the initial time of the trip t and α,β∈  VT. The output
contains a fastest trip trip and its duration. If duration=∞, trip is indefinite. The trivial solution is given by
trip=∅  and duration=0. The comments to instructions of the procedure are omitted because they are identical to
the ones of Fig.1.



In these terms, the planning-a-trip problem is: Given α,β∈ VT, find a trip of the minimal summary

duration

|l0( t0 )|+ |l1( t1)|+... + |ln( tn)|,

which begins inside Vα and ends inside Vβ.

     The transportation line trk of k-th link of a fastest trip is supposed to be chosen as

trk= arg
tr

min [l(tk,tr)-tk].

      Under the same assumptions 1-2 as before, this new interpretation leads to a modification of the

algorithm of Fig. 1 for the planning-a-trip problem. This modification is presented on Fig. 3. The above

comments on the principal instructions of the procedure of Fig.1 are true as well for the algorithm of

Fig.3.

COMPLEXITY

Let X be the complexity of algorithm of Fig.1. This section presents an estimate of X for the case when

graph T is a tree.

         Let f<~g denote the fact that function f is less than a function linear in function g. I.e., that f<Cg

holds for some constant C and all values of the arguments of f and g.

In this notation, X<~NY holds, where N and Y means, respectively, the number of recursive calls of

the procedure and the complexity of the body of each copy of the procedure spawned in the recursive

process.

Denoting by C1 the maximal number of nodes in paths of T, and C2=max|M(µ,ν)|, one has N≤

2
2

1)2( −CC .

To estimate Y, let us estimate the complexity of the principal operations of the body.



Let P be the complexity of retrieval of a record from the database that stores the GT-model. All lines

of Fig. 1 marked with “**” assume such retrievals. P can be accepted as linear in the logarithm of size of

GT-model.

Let us assume that this database grows downwards uniformly in the sense that the number of

children for all nodes is approximately the same, and that for all brother nodes µ,ν, it is true C2=|M(µ,ν)|.

In this case, logarithm of the database size grows as a function linear in C1.

Since T is assumed to be a tree, then, as it was mentioned above, the instruction

if (Vα⊃ Vβ or Vα⊂ Vβ)

just means the backtracking of two paths from α and β, respectively, to  the source-node of T. Since each

path contains ≤C1 nodes, the complexity of this instruction is  bounded by a function linear in 2C1P.  That

is, it is by a function linear in 2(C1)
2.

      The same relation <~2(C1)
2 holds for the complexity of construction of a single possible pair of

brother nodes µ,ν∈  VT built by α,β.

       For each pair (µ,ν), the complexity of retrieval of all l∈ M(µ,ν) is linear in C2P. That is, it is linear in

C2C1.

      Hence, Y<~ [2(C1)
2 +2(C1)

2 + C1 C2].

Finally, we have come to

   X<~ Y N<~ [2(C1)
2 +2(C1)

2 + C1 C2] 
2

2
1)2( −CC ,

i.e.    X<~ (4 C1+C2)C1
2

2
1)2( −CC .

      Note that this estimate does not depend on the sizes |Vα| and |Vβ| of arguments of espp. Informally, it

means that the required time for planning a best route between, for example, two buildings all over the

world is bounded by the same limit as between a street and a country. This leads to an essential gain in

complexity with respect to the straightforward approach to espp mentioned in Introduction.



       A similar estimate holds for the planning-a-trip algorithm of Fig.3. In this case, we may assume that

for a model that represents geography of the real world, C1=6. For instance, the six nodes of a path in T

can mean, respectively: world, country, state, region, town, and street.

      If maximal number C2 of the edges that connect the domains of two brother nodes of T is limited, for

example, by five, we obtain

(4 C1+C2)C1
2

2
1)2( −CC =(24+5)×6×104<106.

     Although the assumptions used for this estimate are rather rough, this analysis shows that a virtual

project of a system able to find in real time a fastest trip between any pair of geographical objects of the

world is quite realistic.

DISCUSSION: CREATION OF GT-MODELS

Informally, the practical result of this paper is that if all states of a moving agent inside its environment

are represented by a GT-model, then there exits a universal and efficient algorithm that finds an

optimal solution for any navigational problem posed in terms of this GT-model, avoiding exploration of

the environment by the agent.

     So, keeping in mind the same two applications as above, a natural question is how to create a GT-

model for either of them.

     Creation of a GT-model for the planning-a-trip problem is rather a matter of development than of

research. The goal of such a development is representation of all available timetables in the form of a

dedicated database that satisfies the specifications presented above. For this application, graph T should

represent a real geographic system.

     Development of such a database involves many specific aspects as standards, protocols, actualization,

etc. Nevertheless, there is no principal obstacle for such a development.



     In contrast with that, learning GT-model for a visually guided robot contains a large field of work for

researchers. In fact, for robotics applications, GT-approach cannot be used literally and needs some

modifications.

    The point is that, since the nodes of graph G are interpreted as classes of similar views, it is not clear

how to store and recognize them in practice. Indeed, for a real environment with a huge number of views,

it is unrealistic to interpret views as crude digital pictures because they require much of memory and are

unstable due to change of light conditions and other factors.

     Note that, for a laboratory experiment when the number of nodes is respectively small, learning G is

quite possible. In particular, successful experiments of learning view graphs are presented in [Shölkopf

and Mallot, 1995] and in [Franz et al., 1998].

     Since the set of nodes of G coincides with the set of terminal nodes of T, the huge size of G represents

as well an obstacle for learning T.

      Nevertheless, this and some other obstacles can be eliminated modifying GT-model. The goal of the

rest of this section is not to present such a modified GT-model, but rather to show that it is possible.

     At the same time, we want to present some specific research lines motivated by the above approach.

      One of these lines is represented by the problem of merging GT-models. Informally, this problem is

similar to the following question: let some GT-models of table and of room be given. How can they be

used for the creation of a GT-model that would represent room containing table?

     Below we consider some aspects of learning T and G.

Learning Graph T

Due to the fact that the graph T simulates some fundamental properties of human geographic mentality, a

simple language can be developed for supervised learning T.

       Indeed, we can assume that such a language involves instructions of the two following kinds:



•  Presentation in any order of geographic identifiers (like USA, Paris, Broadway,...)

•  Presentation of inclusions (like USA⊃ Broadway).

It is possible to develop a translator able to build the nodes and edges of T interpreting instructions of

these kinds.

    For example, after instruction USA⊃ Broadway, the translator must introduce an edge between nodes

representing USA and Broadway, respectively. However, after instructions USA ⊃  New_York ⊃

Broadway, this edge must be deleted and replaced by two new edges, the one between USA and

New_York, and another one between New_York and Broadway.

Remark 3. As far as graph T belongs to a wider class than trees, the GT-approach gives tutor much of

freedom for expressing inclusions. In particular, it allows introducing both Moscow⊂ Russia and Moscow

⊂ Europe. For T given as a plain tree, these two instructions are incompatible because Russia ⊄  Europe

and Europe ⊄  Russia.

      However, if T is aimed to represent geography for navigation in real scenes, it is unrealistic to

introduce all its nodes and edges by supervisor.

      For example, dining room represents an explicit name of a geographical object of a natural

environment. It can be used for localization of robot in scene or as a goal of a navigational task. However

in real life, we use also smaller geographical objects for navigation, although they have no proper name.

      To some extent, natural language allows us to determine them by sentences. For example, a small

geographic object can be defined as "the set of robot states inside the dining room specified by the

condition that the table is on the robot's left side and, at the same time, the robot can see a cherry tree

outside the window".



    In real life, we chose automatically some landmarks to determine such sets of states in a scene.

    These arguments show that the lower levels of graph T should be constructed automatically rather than

presented by a tutor.

     Furthermore, note that for a visually guided robot, instead of storing all nodes of a lowest level map

of T, it is possible to store only one its representative. It leads to a considerable gain of the required

memory and the learning time.

    This opportunity is closely related to p. 2 of remark 1. Indeed, the assumption that any local

navigational task is expressed only in terms of visible landmarks implies that the paradigm of Visual

Servoing [Hashimoto, 1993] can be used for robot local navigation. That is: Given a set of landmarks in

an input view, control the robot by visual feedback to achieve a view with a specified state of these

landmarks.

      If a navigational task is understood as a problem of Visual Servoing, there is neither need to interpret

it as a graph problem (which was mentioned in remark 1), nor the necessity of storing in memory all

possible intermediate views inside a low level map.

     These observations suggest a clear idea of how to modify GT-model to make realistic the volume of

required memory. Note that it leads to a significant gain of the needed memory due to the dimension

factor: The nodes of a lowest level map represent a sampling of a six-dimensional space (we mean the

space of states of a rigid body in R3).

     One more way to reduce the plain memorizing of nodes of T is to allow the robot a limited exploration

of its environment. I.e. the exploration can be allowed if the minimal sub-graph of T built by the goal and

the initial nodes, which determine a navigational task, is respectively small. Future research must

determine to what extent small.



Remark 4. In principle, it is possible to develop a scheme of unsupervised learning T. However supervised

learning of real geographical concepts has a specific purpose: If the nodes of T stand for some real

geographic objects, then the natural navigational problems can be simply translated into the problems

posed in terms of a corresponding GT-model and planned automatically. For example, considering again

the task “go to the dining room”, if we wish a GT-model of the real world to fit this task, then a node of T

must represent the dining room.

Learning Graph G

An application of GT-model could be relatively free of the interpretation of G, meanwhile learning G

depends on that.

        For example, the peculiarities of the planning-a-trip problem transform the process of learning G into

respectively simple writing the timetables into a database.

        Unlike that, for robot motion planning, any interpretation of G changes learning G.

Note that in addition to the interpretation presented in the Introduction (see [Khachaturov, 1999A]

for more details of this interpretation), graph G of a GT-model may be substituted with view graph

[Mallot and Shölkopf, 1995] developed furthermore in [Franz et al., 1998], or even with Canny’s road

map [Canny, 1987].

A brief comparison of these three interpretations follows.

 “The edges of the view graph indicate temporal coherence: Two views are connected if and only if

they can be experienced in immediate temporal sequence” [Shölkopf and Mallot, 1995]. Unlike that, an

edge of G  presented in the Introduction connects two “relevant” views by a control rule. While moving

due to such a rule, the robot can meet and use in its control loop many “irrelevant” views, i.e. those views

which should not be stored in the model.



Both approaches avoid working with any explicit model of robot configuration space. They

introduce G as cognitive maps with the purpose to make G useful not only for planning, but for physical

execution of paths in G as well.

        Unlike that, the edges of Canny’s road map refer to one-dimensional objects of robot configuration

space. So, if a path in Canny’s map is found, its execution by a concrete robot control system represents

an independent problem: the Canny’s map does not deal with any data which would link a concrete robot

sensor (e.g. vision) with a path to be executed.

        However for the first two interpretations, the inclusion of G into the process of low-level robot

control is rather a goal than a real fact, especially for the case of huge volume of visual data for a real

robot environment. It is the point of future research to change this situation.

         To achieve this goal, in particular, it makes sense to codify each view by parameters of some

landmarks. We will touch again this point in the last item of this section.

          Note that no essential property of vision is involved yet in the above approach. Indeed, for all

interpretations of G, the “views” are related to the sensor input in general. It can be poor (as for a blind

man), or rich. However, the robot with poor sensor input can navigate successfully without exploration (as

a blind man), provided that its GT-model is adequate. So, what are those essential properties of vision

contrasting with a sensor in general? How can they be described in terms of G and T? What is their role

for learning?

      In this respect, the ability of vision to perform a remote reachability test seems very promising for

learning GT-model. For example, this ability can be expressed in the following way [Zhukov et al., 1998]:

Seeing a pair of remote objects, say A and B, we can detect sometimes that the object A can be reached

moving from B. Moreover, we can track visually a shortest path between B and A which could be

tracked physically provided that our initial state is at B.



      So the point of future research is how to provide a robot with a similar ability combined with the

ability of a correct identification of A and B with some nodes of graph T. If robot can do that, then filling

in the database of GT-model could be simplified significantly: most of the data would be written after

remote tracking paths instead of tracking them physically.

Database and Graph Theory Aspects

Development of a system based on the presented approach involves some specific problems related to

databases, graphs, and complexity. Two of them follow.

•   The algorithms of Fig. 1 and Fig. 3 are based on the database representation of GT-model. In

particular, it implicitly assumes that each newly learnt edge of G would be stored in accordance with those

rules that were introduced above for this database. A system support of this assumption meets no serious

obstacles unless database contains some errors (like USA⊂ Russia). However in general case, the

development of an error tolerant system requires additional research.

 •  As it was shown above, the complexity of search is respectively low as long as graph T is "good"

in a certain sense. However, in general case a system of real geographic concepts can lead to a “bad” for

complexity graph T. Future work should study this contradiction in details.

Perception

Trying to introduce a discipline into a vast variety of possible architectures for the processing of input

images, we find that GT-approach can be useful for that.

     We may understand the views of a visually guided robot in a wide sense, i.e. as the images of any kind

of remote sensor. In particular, the sensor can be a laser system producing range images, a binocular

system, a gray-scale TV-camera with variable focus, etc.

     The compression of an input image into a compact description of parameters of current landmarks

depends strongly on the kind of sensor.



      Similarly, the set of parameters relevant for navigation, that must be extracted by perception, is not a

fixed set: As the number of parameters as well as their semantics are free to large extent for variation. For

a fixed robot pose in a scene, the relevancy of each parameter depends on the current operational goal of

the robot.

The important feature of GT-approach is that it represents  the properties of perception, which are

essential for navigation, in the form of specifications on the perception system. It provides a distinct

interface between what-we-need from perception for a good navigation and how-to-achieve that.

For example, the above-mentioned ability of remote reachability testing can be easily expressed in

terms of GT-approach in axiomatic form, as something given. Then we can study what this property

contributes for learning GT-model. Independently, we can study how to develop a perception system that

provides this ability.

       There is another peculiarity of GT-approach that can be used to simplify perception.

        Note that there are only two system tasks that perception should perform for tracking physically a

path found by a GT-model: (i) auto-localization of the current robot state as a node of T, (ii) providing a

feedback for the robot control loop like in Visual Servoing approach.

        Combining properly these two tasks with the GT-approach, it is possible to use “perception by

adjustment”, which is much simpler than “perception in general”. The following clarifies this idea.

Let us assume that the robot knows its actual state as a node of T. The next robot state and,

consequently, its next view are not arbitrary: They depend on the actual state and the current action that

robot will do.

It is similar to the following example “I am in the hall. Passing this door, I do enter the kitchen.

When I will have done that, I see a table on my left.” For this example, the perception by adjustment

means that entering the kitchen, the robot already knows that what he sees on his left must contain a table.

So the point is to identify exact positions of all details of the table in the view. Of course, the required



processing (perception by adjustment) is much simpler than analysis of the same view, but without any

historical and spatial context (perception in general).

For the same example, hall and kitchen correspond to certain nodes of T. While the robot moves

from hall to kitchen due to a correct plan, the matter of current localization is only to detect the moment

when hall is no longer valid. After that, the robot knows that he is already in kitchen. This makes

localization quite simple.

     Although some of these ideas might seem to be quite straightforward, unlike other approaches, the GT-

approach presents a mean for their practical integration.

     On the other hand, it is clear that these ideas are not a solution, but just a challenge to start research

that should find it.
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