Heavy Changes in the Input Flow for Learning
Geography of a Robot Environment

Georgii Khachaturov®™), Josué Figueroa-Gonzélez,
Silvia B. Gonzalez-Brambila, and Juan M. Martinez-Hernandez

Metropolitan Autonomous University - Azcapotzalco,
San Pablo Av. 180, Reynosa Tamaulipas, 02200 Mexico City, Mexico
{xgeorge, jfgo,sgb}@correo.azc.uam.mx, martinez.juan.hdz@gmail.com

Abstract. A novel approach to generation of geographic knowledge
from robot views is presented. It is implemented in a pilot software where
a virtual robot operates in a static 2D-environment. The robot sensor
scans with rays an angular field of view and produces a 1D view of dis-
tances to the closest obstacle. By processing such views, ‘heavy changes’
are detected to trigger switching local maps in an atlas that represents
geography of the robot environment. To detect heavy changes, firstly,
each plot is transformed to a string of singular points; then, in time-scale,
a pair of such strings is subjected to a treatment based on application
of the distance of Levenshtein, which leads to so-called Editorial Pre-
scription (EP); a heavy change is detected if EP shows a considerable
distinction between strings. This approach is applied in automatic con-
struction of an atlas for non-Cartesian navigation, while robot explores
the scene.

Keywords: Detection of heavy changes - Levenshtein distance - Map
switching - Non-Cartesian navigation *+ Processing range images

1 Introduction

The particular problem treated in this paper is related to a wider research: the
one of non-Cartesian robot navigation. Its specific is illustrated below with some
views generated by a pilot software that simulates evolution of a virtual robot in
an environment, guided by supervisor. The environment is static, bi-dimensional,
and populated with obstacles. Figure 1a shows an instance of such environment;
it is a supervisor’s view of a scene; the robot itself is shown as a dark triangle at
the bottom. If the robot would be supplied with a color camera, it could see the
same scene as Fig. 1b shows. However, it has a different kind of sensor: the one
that scans all directions in a field of view and measures a distance to the first
obstacle along each direction; each distance is subjected to a transformation so
that the final view obtained by the robot for the same scene is the one shown
in Fig. 1c. Note that views like Fig. 1c are called below ‘angle-distance plots’,
but this should not to confuse the readers: they show not crude, but somehow
transformed distances.

© Springer International Publishing AG 2017
L. Rutkowski et al. (Eds.): ICAISC 2017, Part I, LNAI 10245, pp. 518-529, 2017.
DOI: 10.1007/978-3-319-59063-9_46

Heavy Changes in the Input Flow for Learning Geography 519

(b) |
©

7

=

Fig. 1. Three views for the same “robot-in-environment” scene: (a) A supervisor’s
view; the robot position and orientation is shown by a dark triangle at the bottom;
the dashed line is commented in Sect.5. (b) A robocentric view by a color camera.
(¢) A robocentric view by an ‘angle-distance plot’. The lines between (a) and (b), and
between (b) and (c) connect the same objects and the same details shown in the views.
(Color figure online)

A single view like the one in Fig. la provides the supervisor with full infor-
mation about geography of the environment. But it is unavailable to robot, so
we try to help the robot to reach an equivalent understanding of the geography,
but by processing a set of views similar to that in Fig. lc.

The process of learning geography is based on driving the robot along a
continuous trajectory in the scene, combined with interpretation of the input
flow of robot views. The process starts from an initial robot position in the
scene, like the one of Fig. la.

This work presents an approach to a particular issue of processing the input
flow: the detection of ‘heavy changes’ or, in other words, those changes in the
flow, which can be used as milestones for the non-Cartesian navigation. Note
that robot should run a permanent process of self-localization for identifying the
map in the atlas to which the robot’s current state belongs (so called current
map). While no heavy change occurs, the robot stays in the same current map;
otherwise it must switch the current map to other map of the atlas or, if no
appropriate map exists, firstly to introduce a new map into the atlas and only
then switch the current map to it. That is, the heavy changes are the main inter-
face between the robot sensor system and an inner representation of geography.

Our approach is implemented in the scope of the pilot software mentioned
above and its principles are verified by experiments with this software.

The rest of paper is organized as follows: Sect.2 offers a brief review of
previous works and some concepts used in this paper. Section3 describes a

520 G. Khachaturov et al.

processing scheme for detection of heavy changes. Section4 develops further-
more the draft of Sect. 3, namely it deals with specific issues of the Levenshtein
distance. Section 5 describes the pilot software and experiments on it. Section 6
contains a conclusion.

2 Used Concepts and Related Works

2.1 The Levenshtein Distance

The Levenshtein distance [1] is a measure of the difference between two strings
and it can be described as the minimum number of operations over single letters
needed to convert or change one word into another. Such a step-by-step con-
version is called editorial prescription. The process for obtaining this measure
was developed by Vladimir Levenshtein in 1965. In general case it depends on
three functions: w(p, g) — the cost of replacement of symbol p with symbol g,
w(e, g) — the cost of insertion of symbol ¢, and w(p,e) — the cost of deletion of
symbol p. Let string a should be converted to string b, then the following formula
(1) determines recursively all elements of a rectangle matrix

0if j=1=0; else:
Da,b(i - 1,()) + w(57ai) H Da,b(oaj - 1) + w(bj7€)
. Jforj=0]li=0; otherwise :
Da,b(Z,J) = Da,b(i —1,75) + w(e, bj) S
mn Da,b(iaj - 1) + w(ai’g)
Dap(i—1,7 = 1) + wlaibs) * L(a,0,),

where ¢ and j > 0 run indexes of symbols in respective strings, 1,4, ;) is so called
indicator function equal to 0 when a; = b; and to 1 otherwise. In particular case,
when w(e, ¢) =1, w(p,e) =1, w(p, p) =0, and w(p, ¢) = 1 as p # q, this matrix
defines the Levenshtein distance between ¢ and b. The Levenshtein distance is
widely known thanks to the applications used in detecting plagiarism in text or
codes [2], and recently in dialect analysis [3]; some uses of this technique related
with image processing can be found in [4]. Here it is applied to the strings
constructed as a coded form of the angle-distance plot. Such strings are quite
short so we do not meet difficulties specific for the detecting plagiarism in large
texts.

2.2 Non-Cartesian Navigation

Navigation for humans and animals does not assume pointing the goal as a
point in a Cartesian space. The attempts to understand how the human brain
tackles the navigation tasks have been undertaken in numerous works, during
several decades mainly in psychology. The first mathematically strict model of
non-Cartesian navigation was proposed by Khachaturov [5]. Other works on this
topic are [6-8].

Heavy Changes in the Input Flow for Learning Geography 521

The model presented in [5] (so called GT-model) is formed by two graphs:
G which stands for the robot sensor-motor knowledge, and T represents a geog-
raphy or administrative system imposed on a corresponding environment. In
formal terms, a GT-model is defined as pair {G, T}, where the components
satisfy the following properties:

- G = (Vg, Eg) is a directed graph with non-negative weights assigned to its
edges;

— T = (Vr, E) is a directed graph with an unique source-node whereas the set
of its terminal nodes coincides with V.

Interpretation of nodes of Vz and edges of E¢ follows. Let S denote the space
of all robot states inside an environment. It is assumed that robot views are put
in one-to-one correspondence with points of S. A set of close in a metric robot
views generates a neighborhood of close states in S. Each node of Vi stands for a
domain of S and the whole set of nodes Vi represents a sampling of S generated
by equivalent in a certain meaning robot views.

An edge | € Eg, where [= (a,b) and a, b € Vi, represents a control rule
that drives robot to change any view associated with a to a view associated with
b. Graph T represents a system of sets composed by nodes of G. This system
is determined by the following rule: Any node aof Vi corresponds to set V,, C
Vi defined as the set of all terminal nodes of all paths in T that start from a.
Intuitively, « is the name of a geographic object represented by the set V,, —
the domain of a. An edge of Er from node 8 to node « stands for inclusion of
respective domains, V3 D V,, so the first geographic object of an edge is wider
than the second.

Since a terminal node of T corresponds to a node of Vi, it represents some
close states of a robot inside its environment. Unlike that, for a non-terminal
a € Vp, its domain V, can contain far robot states. Graph T organizes such
domains into a system quite similar to a real system of geographical concepts.
In particular, the domain of the source-node of Vp is the whole V. If there is
a path in T from « to 3, then the domain of o obviously contains the domain
of 8. The simplest kind for T is a tree. If T is a tree, it represents so-called tree
decomposition of G, [9].

In these terms, formalization of a non-Cartesian navigation problem is as
follows. Let o, 8 € Vr and V,,, V3 C Vi be domains of a and (3, respectively.
The problem is: Find a path in G with minimal summary weight that begins
inside V, and ends inside V. This problem is called the extended shortest path
problem (espp). So an espp means search of a best route that connects two sets,
however not arbitrary sets but only those represented by some nodes of the
geographic graph T. It was shown in [5], that under some natural assumptions a
navigational problem can be solved by a dynamic programming algorithm with
a relatively low computational complexity.

522 G. Khachaturov et al.

2.3 Geography of the Lowest Level

In spite of the theoretical advantages of the GT-model mentioned in the previous
section, no progress in its practical implementation can be found in literature
since the publication of [5]. The main obstacle for that consists in the necessity
of novel methods for automatic learning the lowest, non-verbalizable level of
geography. To clarify this issue, consider any geographic item that has an explicit
name like Poznan, Broadway, Asia, etc. It is technically clear how to insert such
an item into the geographic graph of GT-model. In contrast to that, each item
of the lowest geographic level should be represented by a map that does not have
neither a distinctive shape, nor an attributed name.

Moreover, in contrast to the verbalizable levels of the geographic graph of the
GT-model, the lowest-level geography depends essentially on the sensor system.
Note that the higher levels can be the same, say, for a robot, a blind person, as
well as for a human who does not suffer any illness of sight. On the contrary,
the lowest level geography depends on available sensors: for a blind person — on
the stick which he/she uses for exploration of the environment, and for a normal
person — on his/her vision. This is why a special technique for learning geography
of the lowest level should be developed and studied, and why the detection of
heavy changes is important.

2.4 Related Works

A brief review of some related research lines follows.

Simultaneous Localization and Map Building problem (SLAM) [10-13]: the aim
of it this approach is to convert a set of robocentric views into a single map.
This ‘map’ is understood not as in our work, but in a traditional, Cartesian
meaning so that a human could read it and use. The SLAM techniques involve
statistical methods including extended Kalman filter [14] and Rao—Blackwellized
particle filters [15]. They allow feeding the map creation while the robot moves
smoothly. The ideas of SLAM seem very fruitful to be combined in future with
our approach to cope with the robot dynamics.

Path Planning for Autonomous Vacuum Cleaner Robots: The user of a cleaner
robot must be certain that in a certain time with a high probability the robot
will clean every corner of the workspace. It can be reached avoiding the require-
ment that the robot any moment be aware of where it is located. So the effi-
ciency of sweeping workspace, sufficient for practice can be provided without
construction of a computational model of the workspace. It is reached by apply-
ing some context-specific heuristics and sensors in combination with statistical
principles [16].

3 A Draft Scheme for Detection of Heavy Changes

3.1 Sensor System for Learning Geography of the Virtual Robot

The main goal of developing the virtual robot briefly presented in the beginning
of paper is to study principles of automatic learning non-Cartesian geography.

Heavy Changes in the Input Flow for Learning Geography 523

Image processing and recognition play an auxiliary role. This is why the sensor
system of robot was intentionally designed as simple as possible. In particular,
each robot view, like one in Fig. 1c, is just a real function of one variable.

It should be mentioned from the beginning that our processing scheme of the
robot views depends essentially on the dimension of the views. A discussion about
extension in future of this scheme, which is applied here to the 1D-images, to
higher dimensions and other kind of sensors, such as conventional video cameras
or ultrasonic sensors, lays beyond the scope of this paper.

While using a virtual reality platform it is easy to generate a complex scene
and extract any kind of information related to the scene for different kinds of
virtual camera. Our virtual robot is developed by means of OpenGL and the
screenshots of Figs. 1 are just different ways to render the same scene.

3.2 Main Idea for Detection of Heavy Changes

Intuitively it is clear that the visual events specifically important for robot nav-
igation are related to the facts of appearance/disappearance of objects or gaps
in sight and also to a qualitative change in appearance of an object. So the
events of such kinds should be primarily detected and then used for indexing
the maps of a geographic database. On the other hand, the value of argument
where the image of an obstacle begins or ends in a view strongly corresponds
to a discontinuity of the first derivative of the plot; then, a discontinuity of the
second derivative has a strong correlation with an angle of the object shape. It
can be easily seen by comparison of the corresponding elements of Figs. 1b and
c connected by the association lines. This observation suggests us to perform a
transformation of each angle-distance plot into string formed by singular points
constructed by discontinuities of the first and the second derivatives of the plot.
The transformation ‘plot-to-string’ is the first step in detection of heavy changes.
Its details are presented in the upper block-diagram of Fig. 2.

In this transformation, the type of any singular point belongs to the follow-
ing short alphabet: {STEP_UP, STEP_DOWN, ANGLE_ TOWARD_ROBOT,
ANGLE_.OUTWARD_ROBOT} with an obvious intuitive meaning of each
option.

A subsequent processing step performs temporal analysis of the flow of such
strings. The idea to use for this step a technique based on the Levenshtein distance
suggests itself: when two strings of the singular points are represented in an
alphabet, one can find their editorial prescription. And if, for example, such
two strings generated for some close moments completely match each other, it is
naturally to claim that no heavy change occurred; otherwise, a further analysis of
the vector of editorial prescription should follow to classify possible occurrence
of a heavy change. A graphic representation of this step with more details is
shown in the lower block-diagram of Fig. 2.

524 G. Khachaturov et al.

1. Transformation "ADP to String of SPs"

1.1 Input View: 1.2 Draft of 1.3 Correction 1.4 String of
Angle-Distance String of filter singular
Plot singular points points

2. Detection of heavy changes

2.1 Construction 2.3 Analysis of

2.1 String of of edito'rial prescription editorial
singular for a pair of prescription
points t|m.e—separated

strings

QYGS

To geographic
database (Atlas)

Fig. 2. Block-diagram of the two main steps of detection of heavy changes.

4 Specific Issues of Detection of Heavy Changes

There are two specific issues in the just presented scheme. The former is related
to the errors in classifying a singular point, blocks 1.2 and 1.3 of Fig. 2: it turns
out to be that such errors cannot be avoided completely. Indeed, if the robot
would drive around a pyramid, its shape in the view changes and finally a shape
of angle in the angle-distance plot will be transformed to a shape of step-function;
consequently the errors are inevitable for some critical region of arguments. Nev-
ertheless, some thresholds of the algorithm of extraction of singular points can
be optimized to reduce probability of the errors of this kind. This optimization
was provided, [17], and the probability of errors from its initial value 8% for some
intuitively chosen thresholds was reduced in result to 0.2-0.3%. Other kind of
possible errors is generated by the detection of two or more very close singular
points that, in fact, are yielded by a single singular point. The correction filter
(Fig. 2, block 1.3) was introduced just to reduce errors of this kind. For example,
the filter merges two STEPs of the same kind (see the alphabet in the previous
section) if distance between them is very short.

The latter is related to the application of the Levenshtein distance and is a
consequence of the fact that as the alphabet for singular points is rather small
as well as the strings of singular points are respectively short, which makes
the errors in interpretation of editorial prescription (block 2.3 of Fig.2) rather
probable. In the rest of this section, we describe some problem-specific expedients
to reduce significantly the probability of the last kind of errors.

Heavy Changes in the Input Flow for Learning Geography 525

4.1 An Enriched Description of Symbols for Computing
the Levenshtein Distance

A close look at the process of computation due to formula (1), shows that what-
soever specific of a particular problem is hidden in computation of the function
L(a;b;) and the costs w(p, q), w(e,), and w(p,). As to function 1(4, ;) if one
just compares literal coincidence of the symbols a; and b; then no problem-
specific is taken in consideration. However, if each symbol is provided with an
enriched problem-specific description, it allows us to improve the proper defin-
ition of 1(4,2p,). For the problem under consideration, additionally to its type
from the above alphabet, each singular point can be accompanied, for instance,
with the value of distance. Since the strings to be compared typically correspond
to the two robot states, one before and another after application of a robot con-
trol, it is technically possible to evaluate whether the distance associated with
b; can match to the distance of a;. This idea was implemented in our software,
which significantly improved the function 1(4, ;). See the top-right of Fig. 3 for
an instance of computation of 1(4,xp;)-

One more expedient to reduce errors consists in the introduction of an arti-
ficial symbol of the kind LEG between each pair of usual singular points. Its
description, in particular, includes the leg-length, that is, the distance between
two successive singular points. This allows us to improve furthermore the idea
of Sect.4.1: using lengths of legs, it is analyzed how probable is that under a
certain control two legs can match each other.

4.2 Interpretation of an Editorial Prescription

We construct Editorial Prescription (EP) by the well-known Wagner-Fischer
algorithm [18]. Finally, an EP is represented as a string in the following alphabet:
{MATCH, REPLACE, INSERT, and DELETE }. Evidently, if all symbols of
an EP are MATCHes, then no heavy change occurs. If EP contains INSERT
or DELETE, it mostly means a heavy change. But some situations regarded in
Block 2.4 of Fig. 2 require a problem-specific heuristic. Just two examples of such
heuristics for computation of 1(,,p,) follow:

A limited equivalence between MATCH and REPLACE is allowed. For exam-
ple, an STEP_UP is regarded as equivalent to ANGLE_.TOWARD_ROBOT for
singular points with distances quite close to the far distance-limit of angle-
distance plots. This decision naturally follows from the manner of how OpenGL
constructs the content of z-buffer [19]: when some real distances are far, they are
compressed in z-buffer to very close values; so it is easy to confuse a far STEP
with a far ANGLE if they are of appropriate types. Partly, interpretation of an
EP depends on a priori knowledge of the applied robot control. For example,
if the control command is ROTATE, it is expected that distance to any singu-
lar points will stay practically the same after application of the command. A
rotation can lead to an appearance or disappearance of a singular point at the
periphery of the field of view. If this occurs, we assume that a disappearance of
singular point is not a heavy change, but an appearance is a heavy change.

526 G. Khachaturov et al.

The above heuristics related to the indicator function were combined with a
problem-specific choice of the costs in formula (1). It was found experimentally
that for our case they should not all be the same. We use the cost of replacement
w(p, q) two times bigger than the costs of deletion w(e, g) and insertion w(p, ¢),
which are set as equal.

5 Experiments

All experiments were accomplished using a pilot software mentioned above. A
detailed description of the software lay beyond the scope of this paper. Just a
concise list of its functional components follows:

— Interactive creation of obstacles of the robot environment (based on [20]);

— Visualization of the environment and different kinds of robot views (based on
[20]);

— Intuitive supervisor graphic interface for controlling robot;

— Training associative memory (Kohonen) to be able to reconstruct a robot
control that drives the robot from one view to another;

— Extraction of singular points and transformation of angle-distance plots to a
string (see Sect. 3.1 and beginning of Sect. 4);

— Construction of Editorial Prescription (EP) for two strings (see Sects. 2—4);

— Detection of a heavy change by interpretation of a EP (see Sects. 3, 4);

— Support of the self-localization task;

— Manipulations with the atlas of geographic maps;

— Serialization/Deserialization.

Using software comprises three stages: (i) generation of obstacles inside the
workspace; (ii) training the associative memory; (iii) learning geography of the
workspace. Some details of this process follow.

Supervisor puts on the scene any number of obstacles (pyramids or cubes),
controlling their size, shape, position, and orientation. Then he/she drives the
robot randomly around the scene; this leads to automatic training of matrices of
the Kohonen associative memory (the data generated at this stage are needed for
automatic estimation of a robot control command that would drive the robot
from one view to some other close view). When the memory is trained, the
program automatically initializes the robot position as in Fig.1la and sets all
content of the geographic atlas to a single initial map.

Starting from this point, supervisor generates discrete commands to drive
randomly the robot around the scene by means of an intuitive graphic interface.
The robot executes the command sequence and automatically learns geography
of the workspace: each robot control introduced by supervisor invokes the above
scheme of detection of heavy changes; any detected heavy change means that the
current map must be changed; the new current map is chosen from the neighbors
of the old one or, if it is impossible, a new map is introduced into the atlas and
then assigned as the current map.

Heavy Changes in the Input Flow for Learning Geography 527

i

»

HREHHHHHHHERRRROR
OROKRHORRHRROKK I
HREHHERRHORORKKH
OHKFHHHEHHHOKKHRH

=

ORKRHHHRHRORRKKHROS

c

X
I

A HRHHRREHHREOHORKH

n lail!=bj of Levenshtein distance)
s q

HHHHOHHRHOHRRKKHOZ
HRHOHHROHRRRRHRRA
OHOKHHOKHRKEHORKHO
HORHHORHHRRRRREH
OHRFHOHRHHHERHKHKRO
HRHOHHROHRRRRHERH
OHOHHHOKRHRRHORK
HORHHORKHRRRKRRER

PESCRIPTION (NO HEAVY CHANGE) :

actl g to

of symbl
actl

of symbl
of symbl
of symbl
of symbl
of symbl
symb1
symb1
symb1

prevs
prevs
prevs
prevs
prevs
prevs
prevs
prevs
prevs
symb1 revs
symb1 5 prevs
symbl 11 i €l Trr 11 in prevs
symbl 12 1 strng to 12 in prevs
symbl 13 in actl strng 13 in pre
LEG of symbl 14 in actl strng to symbl 14 in prevs

symbl
symbl
symb1
symb1
symb1
symbl
symb1
symb1
3

VONONAWNHO

"
=]
=K

b}
CONOUAWNHO

Robot command: turn=-4(Cangle units); advance=0(lin.units)

No HEAVY CHANGE: Stay in the current_map; Its ID —O
=) Casersa AMYPAPE- ater_accs (on\M_Z016.nov.09_ebZBNDebugIM 2016,
EDITORIAL RPESCRIPTION (PROBABLY HEAVY CHANGE) :

EDITORIAL RPESCRIPTION (PROBABLY

LEG of symb 0 of prev str
LEG of symb 0 in act str ANG of symb prev str .
ANG of symb act str LEG of symb act str to symb in prev
LEG of symb act str to symb 0 ev sTP of symb act str to symb in prev
STP of symb 3 in act str to symb 1 in / LES 02 symg G ENSEhNCO) SYWE in prey
LEG of synh 4 in act str to synb 2 jn LEG of symb 3t Str to symb & in brev
ANG of symb 5 in act str to symb 3 in 4 sTP of symb act str to symb 7 in prev
LEG of symb 6 in act str to symb 4 in J LEG of symb act str to symb 8 in prev
sTP of symb 7 in act str to symb 5 in sTP of symb act str to symb 9 in prev
LEG of symb act str to symb 6 in / LEG of symb act str to symb 10 1in prev
STP of symb 9 in act str to symb 7 in prev v sTP of symb in act str to symb 11 in prev
LEG of symb 10 in act str to symb 8 in prev LEG of symb act str to symb 12 in prev
STP of symb 11 in act str to symb 9 in prev sTP of symb
LEG of symb 12 in act str to symb 10 in prev §$,§ g; ;)5;::8
i e CEChoChsvED
sTP of symb 13 of prev str Robot command: turn=-4(angle units); advance=0(lin.units)
LEG of symb 14 of prev str

OCONONAWNHOR

e
O

act str
act str
act str
act str

HRE
NN

X . . | HEAVY CHANGE detected; Looking for neighbor map...
Robot command: turn=4(angle units); advance=0(lin.unit| Neighbor map not found; seek for an attractor-map...

HEAVY CHANGE detected; Looking for neighbor map... ACTION: Intro new map and set as current_map;Its ID=1

ACTION: Neighbor is found and set as currnt map; Its ID: O

Fig. 3. A short sequence of screen-shots of a learning geography experiment (see the
main text).

The correctness of the principles of detection of heavy changes presented in
this work should follow from the fact that the robot would demonstrate the
ability to learn correctly the geography. The criterion of correctness of all taken
decisions is as follows: when a robot trajectory returns to a past point with the
same orientation, its current map must return to an old map that robot had as
the current while visiting this point the last time.

A learning geography experiment is illustrated in Fig.3. The beginning of
the learning process corresponds to the frames of Fig.1. Then the robot was
ordered to perform three turns without any change of position: two successive
counter-clockwise turns and a reverse turn with the same angle. The three angle-
distance plots show the dynamics of the robot views. Note that each of the
three screens shows simultaneously a previous and actual views, respectively, as
a stippled and continuous line-strip. Three screenshots of the console window,
from the top-right to the bottom-left, correspond to respective robot views and
show the response of the learning algorithm; each of them contains an editorial
prescription, a result of detection of heavy change, if applicable, and a subsequent

528 G. Khachaturov et al.

action with geographic database. Additionally, the first console-window contains
an example of computation of indicator function 1(4,p,).

It can be seen that no heavy change occurs after the first turn and so robot
stays in the same map, ID 0; then a heavy change occurs and robot introduces
a new map, ID 1, into the atlas, and changes the actual map to the new one;
after the reverse turn, robot again detects heavy change and returns to map ID
0 chosen as a neighbor of map ID 1.

The results of this simplest experiment completely satisfy the criterion men-
tioned above. A series of such experiments was implemented, including those
with a much longer sequence of robot commands. The experiments which did
not pass the above criterion were used for tuning components of the package;
especially, the tuning is concerned with the issues described in Sect. 4. After the
tuning, all succeeding experiments accomplished so far under normal conditions
satisfy the criterion. The ‘normal conditions’ mean that any view contains a
sufficient number of singular points and that the possibility of two similar views
for distant robot states on a robot path is excluded. The dashed line in Fig. 1a
shows a typical example of a long robot trajectory fulfilled in an experiment
after the tuning. The whole route up to closing the first cycle corresponds to 60
commands of supervisor. The robot detects correctly the cycles of the path and
interacts with the atlas in full correspondence with the expectations.

6 Conclusions

This work is oriented to application of the non-Cartesian navigation in robotics.
Presented results for the first time show how automatic learning the geogra-
phy of a robot environment by means of processing the flow of robot views can
be implemented. The presented here approach is based on detection of heavy
changes in the input flow and their use for interaction with a geographic data-
base. In its turn, the detection of heavy changes is provided by transformation of
each view to a string with subsequent comparison of such strings by a technique
based on application of the Levenshtein distance. This scheme is implemented
in the scope of a pilot software that simulates actions of a virtual robot in 2D-
environment and integrates all components of the approach. The first series of
experiments with this software allows us to claim that main principles presented
here are correct and lead to automatic learning the geography.

Main research lines for future work are: replacement of the 1D robot sensor
to other kinds of sensors; extension of the technique from the 1D to 2D views;
extension to a non-static environment; the connection of this approach with
the possibility of setting navigation problems in natural terms, etc. As to some
challenging goals oriented to practice, we can mention creation of a drone that
would be able to navigate automatically in 3D workspace, and connecting our
approach with techniques based on GPS.

Acknowledgment. UAM-Azcapotzalco supports this work in the scope of project
“Artificial Cognitive Vision”.

Heavy Changes in the Input Flow for Learning Geography 529

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Dokl. Akad. Nauk SSSR 163, 845-848 (1965)

Su, Z., Ahn, B.R., Eom, K.Y., Kang, M.K., Kim, J.P., Kim, M.K.: Plagiarism
detection using the Levenshtein distance and Smith-Waterman algorithm. In: Inno-
vative Computing Information and Control, ICICIC 2008, pp. 569-569. IEEE Press
(2008)

Heeringa, W.J.: Measuring dialect pronunciation differences using Levenshtein dis-
tance. Doctoral dissertation. University Library Groningen (2004)

Schimke, S., Vielhauer, C., Dittmann, J.: Using adapted levenshtein distance for
on-line signature authentication. In: Pattern Recognition, 2004 ICPR 2004, pp.
931-934. IEEE Press (2004)

Khachaturov, G.: An approach to trip-and route-planning problems. Cybern. Syst.
33, 43-67 (2002)

Gomi, T.: Non-cartesian robotics. Robot. Autonom. Syst. 18, 169-184 (1996)
Gomi, T.: Aspects of non-cartesian robotics. Artif. Life Robot. 1, 95-103 (1997)
Vukobratovié, M.: How to control robots interacting with dynamic environment.
J. Intell. Rob. Syst. 19, 119-152 (1997)

van Leeuwen, J.: Graph algorithms. In: Handbook of Theoretical Computer Sci-
ence: Algorithms and Complexity, vol. A, pp. 525-631 (1990)

Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relation-
ships. In: Robotics Research: The Fourth International Symposium, pp. 467-474
(1988)

Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A
solution to the simultaneous localization and map building (SLAM) problem. IEEE
Trans. Robot. Autom. 17, 229-241 (2001)

Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using
active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24, 865-880 (2002)
Guivant, J., Nebot, E., Baiker, S.: Autonomous navigation and map building using
laser range sensors in outdoor applications. J. Robotic Syst. 17, 565-583 (2000)
Castellanos, J.A., Martinez-Cantin, R., Tardés, J.D., Neira, J.: Robocentric map
joining: improving the consistency of EKF-SLAM. Robot. Autonom. Syst. 55, 21—
29 (2007)

Grisetti, G., Tipaldi, G.D., Stachniss, C., Burgard, W., Nardi, D.: Fast and accu-
rate SLAM with Rao-Blackwellized particle filters. Robot. Autonom. Syst. 55,
30-38 (2006, 2007)

Hasan, K.M, Reza, K.J., Abdullah-Al-Nahid.: Path planning algorithm develop-
ment for autonomous vacuum cleaner robots. In: Informatics, Electronics Vision
2014, pp. 1-6. IEEE Press (2014). doi:10.1109/ICIEV.2014.6850799
Khachaturov, G., Espinosa de los Monteros, J.A., Figueroa, J.: Applying spatio-
temporal analysis to angle-distance views for detection of relevant events. In: Infor-
mation Technology: Proceedings of Conference on Informatics and Computer Sci-
ence (CNCIIC-ANIEI 2016), Mexico, pp. 205-214 (2016)

Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33, 31-88 (2001). doi:10.1145/375360.375365

Joy, K.: The depth-buffer visible surface algorithm. Visualization and Graphics
Research Group, Department of Computer Science, University of California
Martinez-Herndndez, J.M.: Development of a virtual robot and its environment
based on a non-Cartesian navigation model. Terminal project for graduation in
Computer Engineering from UAM-Azcapotzalco (2010) (in Spanish)

http://dx.doi.org/10.1109/ICIEV.2014.6850799
http://dx.doi.org/10.1145/375360.375365

	Heavy Changes in the Input Flow for Learning Geography of a Robot Environment
	1 Introduction
	2 Used Concepts and Related Works
	2.1 The Levenshtein Distance
	2.2 Non-Cartesian Navigation
	2.3 Geography of the Lowest Level
	2.4 Related Works

	3 A Draft Scheme for Detection of Heavy Changes
	3.1 Sensor System for Learning Geography of the Virtual Robot
	3.2 Main Idea for Detection of Heavy Changes

	4 Specific Issues of Detection of Heavy Changes
	4.1 An Enriched Description of Symbols for Computing the Levenshtein Distance
	4.2 Interpretation of an Editorial Prescription

	5 Experiments
	6 Conclusions
	References

